Solutions of Midterm Exam

Subject : Control System Engineering 2, Lecturer : Prof. Youngjin Choi, Date : Oct. 27, 2020 (Contact e-mail : cyj@hanyang.ac.kr)

Problem 1 (20pt) Determine the stability properties of the following closed-loop system using Nyquist criterion? where it is noted that $K>0$.

Solution of Problem 1 (20pt) Let us draw Nyquist plot of the following:

$$
G(s)=\frac{(s+3)}{s(s-1)} \quad|K G(j \omega)|=\frac{K \sqrt{\omega^{2}+9}}{|\omega| \sqrt{\omega^{2}+1}} \quad \angle K G(j \omega)=\tan ^{-1} \frac{\omega}{3}-90^{\circ}-\left(180^{\circ}-\tan ^{-1} \omega\right)
$$

- $\omega=+0$ 일때, 크기 $=\infty$, 위상각 $=-270^{\circ}$
- $\omega=+1$ 일때, 크기 $=\sqrt{5} K$, 위상각 $=-206.5^{\circ}$
- $\omega=+\sqrt{3}$ 일때, 크기 $=K$, 위상각 $=-180^{\circ}$

$$
\tan ^{-1} \frac{\omega}{3}+\tan ^{-1} \omega=90^{\circ} \quad \frac{\frac{\omega}{3}+\omega}{1-\frac{\omega}{3} \omega}=\infty \quad \omega=\sqrt{3}
$$

- $\omega=+3$ 일때, 크기 $=\frac{K}{\sqrt{5}}$, 위상각 $=-153.4^{\circ}$
- $\omega=+\infty$ 일때, 크기 $=0$, 위상각 $=-90^{\circ}$
- As $s:+0 \rightarrow-0$ with a radius $\epsilon: \frac{K(s+3)}{s(s-1)} \approx \frac{3 K}{-\epsilon}=-\infty$ 는 음의 무한대 반원으로 맵핑된다.

Thus, it is

- stable when $K>1$ because $Z=P+N=0$ with $P=1, N=-1$
- neutral stable when $K=1$
- unstable when $0<K<1$ because $Z=P+N=2$ with $P=1, N=1$

Problem 2 (20pt) Find the phase crossover frequency ω_{p}, the gain margin $G M$, the gain crossover frequency ω_{g}, and the phase margin $P M$ of the following closed-loop system? where $G(s)=\frac{1-s}{s(s+3)}$

Solution of Problem 2 (20pt)

$$
G(j \omega)=\frac{1-j \omega}{j \omega(j \omega+3)} \quad|G(j \omega)|=\frac{\sqrt{1+\omega^{2}}}{|\omega| \sqrt{9+\omega^{2}}} \quad \angle G(j \omega)=-\tan ^{-1} \omega-90^{\circ}-\tan ^{-1} \frac{\omega}{3}
$$

1. 위상교차 주파수 ω_{p}

$$
\tan ^{-1} \omega_{p}+\tan ^{-1} \frac{\omega_{p}}{3}=90^{\circ} \quad \rightarrow \quad \omega_{p}^{2}=3 \quad \rightarrow \quad \omega_{p}=\sqrt{3}
$$

2. 이득여유 $G M$

$$
\left|G\left(j \omega_{p}\right)\right|=\frac{\sqrt{1+\omega_{p}^{2}}}{\left|\omega_{p}\right| \sqrt{9+\omega_{p}^{2}}}=\frac{1}{3} \quad G M=\frac{1}{\left|G\left(j \omega_{p}\right)\right|}=3 \quad G M[d B]=20 \log 3=9.54[d B]
$$

3. 이득교차 주파수 ω_{g}

$$
\frac{\sqrt{1+\omega_{g}^{2}}}{\left|\omega_{g}\right| \sqrt{9+\omega_{g}^{2}}}=1 \quad \rightarrow \quad 1+\omega_{g}^{2}=\omega_{g}^{2}\left(9+\omega_{g}^{2}\right) \quad \rightarrow \quad \omega_{g}^{2}=\sqrt{17}-4 \quad \rightarrow \quad \omega_{g}=0.35
$$

4. 위상여유 $P M$

$$
P M=180^{\circ}-\tan ^{-1} \omega_{g}-90^{\circ}-\tan ^{-1} \frac{\omega_{g}}{3}=64.1^{\circ}
$$

Problem 3 (20pt) For given system $G(s)=\frac{1}{s(s+2)}$, we wish to meet a steady-state error requirement for a unitramp input ($K_{v}=10$), furthermore, to assure the phase margin of $P M=40^{\circ}$. Design the lag compensation $D_{c}(s)=K \beta \frac{T s+1}{\beta T s+1}$ satisfying two specifications? where $\beta>1$.

Solution of Problem 3 (20pt) $D_{c}(s)=K \beta \frac{T s+1}{\beta T s+1}=K \frac{s+\frac{1}{T}}{s+\frac{1}{\beta T}}$

1. Velocity error constant

$$
K_{v}=\lim _{s \rightarrow 0} s D_{c}(s) G(s)=\lim _{s \rightarrow 0} K \beta \frac{T s+1}{\beta T s+1} \frac{1}{(s+2)}=\frac{K \beta}{2}=10 \quad \rightarrow \quad K \beta=20
$$

그러므로

$$
G_{1}(s)=K_{c} \beta G(s)=\frac{20}{s(s+2)}
$$

2. 목표 위상여유가 40 도이므로 5 도를 더하여 45 도를 위상여유로 잡아서 새로운 이득교차주파수를 찾는다.

$$
\angle G_{1}\left(j \omega_{g}\right)=-90^{\circ}-\tan ^{-1} \frac{\omega_{g}}{2}=-135^{\circ} \quad \rightarrow \quad \omega_{g}=2
$$

3. $\omega_{g}=2$ 로 부터 $\frac{1}{T}=\frac{1}{10} \omega_{g}=0.2$ 로 선정. 그러므로 $T=5$
4. 이득교차주파수에서 크기 $=0[\mathrm{db}]$ 이 되기 위한 β 결정 필요

$$
\begin{aligned}
20 \log \left|G_{1}\left(j \omega_{g}\right)\right| & =20 \log 10-20 \log \omega_{g}-20 \log \sqrt{1+0.25 \omega_{g}^{2}} \\
& =20-6-3=11[d b] \quad \rightarrow \quad-20 \log \beta=-11 \quad \rightarrow \quad \beta=3.55 \quad \rightarrow \quad K_{c}=5.63
\end{aligned}
$$

Thus, we have

$$
G_{c}(s)=5.63 \frac{s+0.2}{s+0.056}=20 \frac{5 s+1}{17.8 s+1}
$$

Problem 4 (20pt) Find the state description matrices in the control canonical form and the modal canonical form of the following transfer function, respectively?

$$
G(s)=\frac{s+7}{s\left(s^{2}+2 s+2\right)}
$$

Solution of Problem 4 (20pt)

1. For the control canonical from,

$$
G(s)=\frac{0 s^{2}+1 s+7}{s^{3}+2 s^{2}+2 s+0}
$$

we have

$$
\dot{x}=\left[\begin{array}{ccc}
-2 & -2 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] x+\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] u \quad y=\left[\begin{array}{lll}
0 & 1 & 7
\end{array}\right] x+[0] u
$$

2. For the modal canonical from,

$$
G(s)=\frac{3.5}{s}+\frac{-3.5 s-6}{s^{2}+2 s+2}=G_{1}(s)+G_{2}(s) \quad \rightarrow \quad G_{1}(s)=\frac{3.5}{s} \quad \text { and } \quad G_{2}(s)=\frac{-3.5 s-6}{s^{2}+2 s+2}
$$

we have

$$
\dot{x}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & -2 & -2 \\
0 & 1 & 0
\end{array}\right] x+\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] u
$$

$$
y=\left[\begin{array}{lll}
3.5 & -3.5 & -6
\end{array}\right] x+[0] u
$$

$$
\begin{aligned}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right] } & =\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u \\
y & =\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+[0] u
\end{aligned}
$$

1. Find the control law that places the closed-loop poles of the system so that they are both at -2 ?
2. Find the output $y(t)$ of the closed-loop control system with initial conditions $x_{1}(0)=1$ and $x_{2}(0)=0$? Solution of Problem 5 (20pt)
3. Let us apply the control law

$$
u=-\left[\begin{array}{ll}
K_{1} & K_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

Then the desired characteristic equation should be equal to $\alpha_{c}(s)=(s+2)^{2}$

$$
\begin{aligned}
\operatorname{det}[s I-A+B K] & =\operatorname{det}\left\{\left[\begin{array}{ll}
s & 0 \\
0 & s
\end{array}\right]-\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right]\left[\begin{array}{ll}
K_{1} & K_{2}
\end{array}\right]\right\} \\
& =s^{2}+K_{2} s+K_{1}+1=s^{2}+4 s+4=\alpha_{c}(s)
\end{aligned}
$$

By comparing both sides, we have

$$
\therefore K_{1}=3 \quad K_{2}=4
$$

2. Closed-loop control system is obtained as

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=(A-B K)\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-4 & -4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \quad y=x_{2}
$$

If we assume $A_{c}=A-B K$, the state vector can be found as

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=e^{A_{c} t}\left[\begin{array}{l}
x_{1}(0) \\
x_{2}(0)
\end{array}\right]=e^{A_{c} t}\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

let us use the matrix exponential

$$
e^{A_{c} t}=\mathcal{L}^{-1}\left[\left[s I-A_{c}\right]^{-1}\right]=\mathcal{L}^{-1}\left[\begin{array}{cc}
s & -1 \\
4 & s+4
\end{array}\right]^{-1}=\mathcal{L}^{-1}\left[\begin{array}{cc}
\frac{s+4}{(s+2)^{2}} & \frac{1}{(s+2)^{2}} \\
\frac{-4}{(s+2)^{2}} & \frac{s}{(s+2)^{2}}
\end{array}\right]
$$

we have

$$
\therefore \quad y(t)=\mathcal{L}^{-1}\left[\frac{-4}{(s+2)^{2}}\right]=-4 t e^{-2 t} \quad \text { for } t \geq 0
$$

