Solutions of Final Exam

Subject : Control System Engineering 2, Lecturer : Prof. Youngiin Choi, Date : Dec. 15, 2020 (Contact e-mail : cyj@hanyang.ac.kr)

Problem 1 (20pt) Consider the electric circuit shown in the figure.
(1.1) Write the state equations for the circuit, where the input $u(t)$ is a current, and the output $y(t)$ is a voltage.

Let $x_{1}(t)=i_{L}(t)$ and $x_{2}(t)=v_{c}(t)$.
(1.2) What condition(s) on R, L, and C will guarantee that the system is controllable

Solution of Problem 1 (20pt)
(1.1) By applying KCL and KVL, we have

$$
\begin{array}{rlrl}
u & =i_{L}+C \frac{d v_{c}}{d t} & L \frac{d i_{L}}{d t}+R i_{L} & =v_{c}+R C \frac{d v_{c}}{d t} \\
L \dot{x}_{1}+R x_{1} & =x_{2}+R C \dot{x}_{2} & y & =R C \frac{d v_{c}}{d t} \\
u & =x_{1}+C \dot{x}_{2} & \dot{x}_{1} & =-\frac{2 R}{L} x_{1}+\frac{1}{L} x_{2}+\frac{R}{L} u
\end{array}
$$

Therefore,

$$
\begin{aligned}
\therefore\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right] & =\left[\begin{array}{cc}
-\frac{2 R}{L} & \frac{1}{L} \\
-\frac{1}{C} & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
\frac{R}{L} \\
\frac{1}{C}
\end{array}\right] u \\
y & =\left[\begin{array}{ll}
-R & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+R u
\end{aligned}
$$

(1.2) Controllability matrix

$$
\mathcal{O}=\left[\begin{array}{ll}
B & A B
\end{array}\right]=\left[\begin{array}{cc}
\frac{R}{L} & -\frac{2 R^{2}}{L^{2}}+\frac{1}{L C} \\
\frac{1}{C} & -\frac{R}{L C}
\end{array}\right]
$$

if the following is satisfied, then the system is controllable

$$
\operatorname{det}(\mathcal{O})=\frac{R^{2}}{C L^{2}}-\frac{1}{L C^{2}} \neq 0 \quad \rightarrow \quad \therefore \quad R^{2} \neq \frac{L}{C}
$$

Problem 2 (25pt) Consider a system with state equation

$$
\dot{x}=A x+B u \quad y=C x
$$

where

$$
x=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \quad A=\left[\begin{array}{cc}
-2 & 1 \\
0 & -3
\end{array}\right] \quad B=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad C=\left[\begin{array}{ll}
1 & 0
\end{array}\right]
$$

The system steady-state error performance can be made robust by augmenting the system with an integrator and using unity feedback; that is, by setting $\dot{x}_{I}=y-r$, where x_{I} is the state of the integrator. To see this, find state feedback $K_{0}=\left[K_{01}, K_{02}\right]$ and K_{1} of the form $u=-K_{0} x-K_{1} x_{I}$ so that the poles of the augmented system are at $-3 ;-2 \pm j 3$.

Solution of Problem 2 (25pt)

1. Since $\dot{x}_{I}=C x-r$, we have

$$
\begin{aligned}
& {\left[\begin{array}{c}
\dot{x}_{I} \\
\dot{x}
\end{array}\right]=\left[\begin{array}{cc}
0 & C \\
0_{1 \times 2} & A
\end{array}\right]\left[\begin{array}{c}
x_{I} \\
x
\end{array}\right]+\left[\begin{array}{l}
0 \\
B
\end{array}\right] u-\left[\begin{array}{c}
1 \\
0_{1 \times 2}
\end{array}\right] r} \\
& {\left[\begin{array}{c}
\dot{x}_{I} \\
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & -2 & 1 \\
0 & 0 & -3
\end{array}\right]\left[\begin{array}{l}
x_{I} \\
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] u-\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] r}
\end{aligned}
$$

2. Here, since $u=-K_{01} x_{1}-K_{02} x_{2}-K_{1} x_{I}$, we get

$$
\left[\begin{array}{c}
\dot{x}_{I} \\
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & -2 & 1 \\
-K_{1} & -K_{01} & -3-K_{02}
\end{array}\right]\left[\begin{array}{l}
x_{I} \\
x_{1} \\
x_{2}
\end{array}\right]-\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] r
$$

3. By using the pole placement,

$$
\begin{aligned}
\operatorname{det}\left[\begin{array}{ccc}
s & -1 & 0 \\
0 & s+2 & -1 \\
K_{1} & K_{01} & s+3+K_{02}
\end{array}\right] & =(s+3)\left(s^{2}+4 s+13\right) \\
s^{3}+\left(5+K_{02}\right) s^{2}+\left(6+2 K_{02}+K_{01}\right) s+K_{1} & =s^{3}+7 s^{2}+25 s+39
\end{aligned}
$$

4. Therefore

$$
\therefore \quad K_{1}=39 \quad \text { and } \quad K_{0}=\left[\begin{array}{ll}
15 & 2
\end{array}\right]
$$

Problem 3 (25pt) Consider the following compensator

$$
D_{c}(s)=\frac{5}{s+5}
$$

(3.1) Determine the sampling time T from $\omega_{s}=25 \times \omega_{b w}$, where ω_{s} implies sampling rate and $\omega_{b w}$ means a bandwidth.
(3.2) Find the approximate model using Tustin's method?
(3.3) Find the approximate model using ZOH ?
(3.4) Find the approximate model using MPZ ?
(3.5) Find the approximate model using MMPZ (modified MPZ)?

Solution of Problem 3 (25pt)
(3.1) Since $\omega_{b w}=5[\mathrm{rad} / \mathrm{s}]$, the sampling time should be chosen as

$$
T=\frac{2 \pi}{\omega_{b w}}=\frac{2 \pi}{125} \approx 0.05[s]
$$

(3.2) Tustin's method

$$
\begin{aligned}
D_{d}(z) & =\frac{5}{\frac{2}{T} \frac{1-z^{-1}}{1+z^{-1}}+5}=\frac{5 T\left(1+z^{-1}\right)}{2\left(1-z^{-1}\right)+5 T\left(1+z^{-1}\right)}=\frac{5 T+5 T z^{-1}}{(2+5 T)-(2-5 T) z^{-1}} \\
& =\left(\frac{5 T}{2+5 T}\right) \frac{1+z^{-1}}{1-\left(\frac{2-5 T}{2+5 T}\right) z^{-1}} \approx 0.11 \frac{1+z^{-1}}{1-0.78 z^{-1}}
\end{aligned}
$$

(3.3) ZOH

$$
\begin{aligned}
D_{d}(z) & =\left(1-z^{-1}\right) \mathcal{Z}\left(\frac{D_{c}(s)}{s}\right)=\left(1-z^{-1}\right) \mathcal{Z}\left(\frac{5}{s(s+5)}\right)=\left(1-z^{-1}\right) \frac{\left(1-e^{-5 T}\right) z^{-1}}{\left(1-z^{-1}\right)\left(1-e^{-5 T} z^{-1}\right)} \\
& =\left(1-e^{-5 T}\right) \frac{z^{-1}}{1-e^{-5 T} z^{-1}} \approx 0.22 \frac{z^{-1}}{1-0.78 z^{-1}}
\end{aligned}
$$

(3.4) MPZ

$$
\begin{aligned}
D_{d}(z) & =K_{d} \frac{\left(1+z^{-1}\right)}{1-e^{-5 T} z^{-1}} \quad \text { where } K_{d} \frac{2}{1-e^{-5 T}}=1 \\
& =\left(\frac{1-e^{-5 T}}{2}\right) \frac{1+z^{-1}}{1-e^{-5 T} z^{-1}} \approx 0.11 \frac{1+z^{-1}}{1-0.78 z^{-1}}
\end{aligned}
$$

(3.5) MMPZ

$$
\begin{aligned}
D_{d}(z) & =K_{d} \frac{z^{-1}}{1-e^{-5 T} z^{-1}} \quad \text { where } K_{d} \frac{1}{1-e^{-5 T}}=1 \\
& =\left(1-e^{-5 T}\right) \frac{z^{-1}}{1-e^{-5 T} z^{-1}} \approx 0.22 \frac{z^{-1}}{1-0.78 z^{-1}}
\end{aligned}
$$

Problem $4(30 \mathrm{pt})$ Consider the relay function with hysteresis shown in the below figure.
(4.1) Find the describing function (equivalent gain) for this nonlinearity when $u=a \sin \omega t$, where the output is a square wave with amplitude N as long as the input amplitude a is greater than the hysteresis level h.

(4.2) Find the amplitude and the frequency of the limit cycle? where $N=1$ and $h=0.1$

Solution of Problem 4 (30pt)
(4.1) The describing function is obtained from the first harmonic components as follow:

$$
D F=K_{e q}(a)=\frac{b_{1}+j a_{1}}{a}
$$

1. From the figure, it is seen that the square wave lags the input in time. The lag time can be calculated as the time when

$$
a \sin \omega t=h \quad \rightarrow \quad \omega_{s} t=\sin ^{-1} \frac{h}{a}
$$

2. Let us calculate a_{1} as follow:

$$
\begin{aligned}
a_{1} & =\frac{2}{\pi} \int_{0}^{\pi} u(t) \cos (\omega t) d(\omega t) \\
& =\frac{2}{\pi} \int_{0}^{\omega_{s} t} u(t) \cos (\omega t) d(\omega t)+\frac{2}{\pi} \int_{\omega_{s} t}^{\pi} u(t) \cos (\omega t) d(\omega t) \\
& =\frac{2}{\pi} \int_{0}^{\omega_{s} t}-N \cos (\omega t) d(\omega t)+\frac{2}{\pi} \int_{\omega_{s} t}^{\pi} N \cos (\omega t) d(\omega t) \\
& =\frac{2}{\pi}\left[-\left.N \sin \theta\right|_{0} ^{\omega_{s} t}+\left.N \sin \theta\right|_{\omega_{s} t} ^{\pi}\right] \\
& =\frac{2 N}{\pi}\left[-\sin \omega_{s} t+0+0-\sin \omega_{s} t\right]=-\frac{4 N}{\pi} \frac{h}{a}
\end{aligned}
$$

3. Let us calculate b_{1} as follow:

$$
\begin{aligned}
b_{1} & =\frac{2}{\pi} \int_{0}^{\pi} u(t) \sin (\omega t) d(\omega t) \\
& =\frac{2}{\pi} \int_{0}^{\omega_{s} t} u(t) \sin (\omega t) d(\omega t)+\frac{2}{\pi} \int_{\omega_{s} t}^{\pi} u(t) \sin (\omega t) d(\omega t) \\
& =\frac{2}{\pi} \int_{0}^{\omega_{s} t}-N \sin (\omega t) d(\omega t)+\frac{2}{\pi} \int_{\omega_{s} t}^{\pi} N \sin (\omega t) d(\omega t) \\
& =\frac{2}{\pi}\left[\left.N \cos \theta\right|_{0} ^{\omega_{s} t}-\left.N \cos \theta\right|_{\omega_{s} t} ^{\pi}\right] \\
& =\frac{2 N}{\pi}\left[\cos \omega_{s} t-1+1+\cos \omega_{s} t\right]=\frac{4 N}{\pi} \sqrt{1-\frac{h^{2}}{a^{2}}}
\end{aligned}
$$

4. We finally obtain

$$
\therefore \quad K_{e q}(a)=\frac{4 N}{a \pi}\left[\sqrt{1-\frac{h^{2}}{a^{2}}}-j \frac{h}{a}\right]
$$

(4.2) The characteristic equation for stability is as follow:

$$
1+K_{e q}(a) G(s)=0 \quad \rightarrow \quad G(j \omega)=-\frac{1}{K_{e q}(a)}
$$

1. The negative reciprocal of the describing function for the hysteresis nonlinearity is

$$
-\frac{1}{K_{e q}(a)}=-\frac{1}{\frac{4 N}{a \pi}\left[\sqrt{1-\frac{h^{2}}{a^{2}}}-j \frac{h}{a}\right]}=-\frac{\pi}{4 N}\left[\sqrt{a^{2}-h^{2}}+j h\right]=-\frac{\pi}{4}\left[\sqrt{a^{2}-0.1^{2}}+j 0.1\right]
$$

2. This is a straight line parallel to the real axis that is parameterized as a function of the input signal amplitude a and is also plotted in the following figure

3. We can also determine the limit-cycle information analytically:

$$
-\frac{1}{K_{e q}(a)}=-\frac{\pi}{4}\left[\sqrt{a^{2}-0.1^{2}}+j 0.1\right]=G(j \omega)=\frac{1}{j \omega(j \omega+1)}=\frac{1}{-\omega^{2}+j \omega}
$$

4. By solving above equations,

$$
\omega^{3}+\omega=\frac{40}{\pi} \approx 12.73 \quad a^{2}-0.01=\left(\frac{1}{\omega^{2}+1} \frac{4}{\pi}\right)^{2}
$$

we can get the solutions

$$
\therefore \quad \omega_{l}=2.2 \quad \text { and } \quad a_{l}=0.24
$$

