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Problem 1 (20pt) Consider the electric circuit shown in the figure.

(1.1) Write the state equations for the circuit, where the input u(t) is a current, and the output y(t) is a voltage.
Let x1(t) = iL(t) and x2(t) = vc(t).

(1.2) What condition(s) on R, L, and C will guarantee that the system is controllable

Solution of Problem 1 (20pt)

(1.1) By applying KCL and KVL, we have

u = iL + C
dvc
dt

L
diL
dt

+RiL = vc +RC
dvc
dt

y = RC
dvc
dt

u = x1 + Cẋ2 Lẋ1 +Rx1 = x2 +RCẋ2 y = RCẋ2

ẋ2 = − 1

C
x1 +

1

C
u ẋ1 = −2R

L
x1 +

1

L
x2 +

R

L
u y = −Rx1 +Ru

Therefore,

∴

[
ẋ1

ẋ2

]
=

[
− 2R

L
1
L

− 1
C 0

][
x1

x2

]
+

[
R
L
1
C

]
u

y =
[
−R 0

] [x1

x2

]
+Ru

(1.2) Controllability matrix

O =
[
B AB

]
=

[
R
L − 2R2

L2 + 1
LC

1
C − R

LC

]

if the following is satisfied, then the system is controllable

det(O) =
R2

CL2
− 1

LC2
̸= 0 → ∴ R2 ̸= L

C



Problem 2 (25pt) Consider a system with state equation

ẋ = Ax+Bu y = Cx

where

x =

[
x1

x2

]
A =

[
−2 1

0 −3

]
B =

[
0

1

]
C =

[
1 0

]

The system steady-state error performance can be made robust by augmenting the system with an integrator
and using unity feedback; that is, by setting ẋI = y − r, where xI is the state of the integrator. To see this, find
state feedback K0 = [K01,K02] and K1 of the form u = −K0x − K1xI so that the poles of the augmented system
are at −3 ; −2± j3.

Solution of Problem 2 (25pt)

1. Since ẋI = Cx− r, we have [
ẋI

ẋ

]
=

[
0 C

01×2 A

][
xI

x

]
+

[
0

B

]
u−

[
1

01×2

]
r

ẋI

ẋ1

ẋ2

 =


0 1 0

0 −2 1

0 0 −3



xI

x1

x2

+


0

0

1

u−


1

0

0

 r

2. Here, since u = −K01x1 −K02x2 −K1xI , we get
ẋI

ẋ1

ẋ2

 =


0 1 0

0 −2 1

−K1 −K01 −3−K02



xI

x1

x2

−


1

0

0

 r

3. By using the pole placement,

det


s −1 0

0 s+ 2 −1

K1 K01 s+ 3 +K02

 = (s+ 3)(s2 + 4s+ 13)

s3 + (5 +K02)s
2 + (6 + 2K02 +K01)s+K1 = s3 + 7s2 + 25s+ 39

4. Therefore

∴ K1 = 39 and K0 =
[
15 2

]
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Problem 3 (25pt) Consider the following compensator

Dc(s) =
5

s+ 5

(3.1) Determine the sampling time T from ωs = 25 × ωbw, where ωs implies sampling rate and ωbw means a
bandwidth.

(3.2) Find the approximate model using Tustin’s method ?

(3.3) Find the approximate model using ZOH ?

(3.4) Find the approximate model using MPZ ?

(3.5) Find the approximate model using MMPZ (modified MPZ) ?

Solution of Problem 3 (25pt)

(3.1) Since ωbw = 5[rad/s], the sampling time should be chosen as

T =
2π

ωbw
=

2π

125
≈ 0.05[s]

(3.2) Tustin’s method

Dd(z) =
5

2
T

1−z−1

1+z−1 + 5
=

5T (1 + z−1)

2(1− z−1) + 5T (1 + z−1)
=

5T + 5Tz−1

(2 + 5T )− (2− 5T )z−1

=

(
5T

2 + 5T

)
1 + z−1

1−
(

2−5T
2+5T

)
z−1

≈ 0.11
1 + z−1

1− 0.78z−1

(3.3) ZOH

Dd(z) = (1− z−1)Z
(
Dc(s)

s

)
= (1− z−1)Z

(
5

s(s+ 5)

)
= (1− z−1)

(1− e−5T )z−1

(1− z−1)(1− e−5T z−1)

= (1− e−5T )
z−1

1− e−5T z−1
≈ 0.22

z−1

1− 0.78z−1

(3.4) MPZ

Dd(z) = Kd
(1 + z−1)

1− e−5T z−1
where Kd

2

1− e−5T
= 1

=

(
1− e−5T

2

)
1 + z−1

1− e−5T z−1
≈ 0.11

1 + z−1

1− 0.78z−1

(3.5) MMPZ

Dd(z) = Kd
z−1

1− e−5T z−1
where Kd

1

1− e−5T
= 1

= (1− e−5T )
z−1

1− e−5T z−1
≈ 0.22

z−1

1− 0.78z−1
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Problem 4 (30pt) Consider the relay function with hysteresis shown in the below figure.

(4.1) Find the describing function (equivalent gain) for this nonlinearity when u = a sinωt, where the output is a
square wave with amplitude N as long as the input amplitude a is greater than the hysteresis level h.

(4.2) Find the amplitude and the frequency of the limit cycle? where N = 1 and h = 0.1

Solution of Problem 4 (30pt)

(4.1) The describing function is obtained from the first harmonic components as follow:

DF = Keq(a) =
b1 + ja1

a

1. From the figure, it is seen that the square wave lags the input in time. The lag time can be calculated
as the time when

a sinωt = h → ωst = sin−1 h

a

2. Let us calculate a1 as follow:

a1 =
2

π

∫ π

0

u(t) cos(ωt)d(ωt)

=
2

π

∫ ωst

0

u(t) cos(ωt)d(ωt) +
2

π

∫ π

ωst

u(t) cos(ωt)d(ωt)

=
2

π

∫ ωst

0

−N cos(ωt)d(ωt) +
2

π

∫ π

ωst

N cos(ωt)d(ωt)

=
2

π

[
−N sin θ|ωst

0 +N sin θ|πωst

]
=

2N

π
[− sinωst+ 0 + 0− sinωst] = −4N

π

h

a
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3. Let us calculate b1 as follow:

b1 =
2

π

∫ π

0

u(t) sin(ωt)d(ωt)

=
2

π

∫ ωst

0

u(t) sin(ωt)d(ωt) +
2

π

∫ π

ωst

u(t) sin(ωt)d(ωt)

=
2

π

∫ ωst

0

−N sin(ωt)d(ωt) +
2

π

∫ π

ωst

N sin(ωt)d(ωt)

=
2

π

[
N cos θ|ωst

0 −N cos θ|πωst

]
=

2N

π
[cosωst− 1 + 1 + cosωst] =

4N

π

√
1− h2

a2

4. We finally obtain

∴ Keq(a) =
4N

aπ

[√
1− h2

a2
− j

h

a

]

(4.2) The characteristic equation for stability is as follow:

1 +Keq(a)G(s) = 0 → G(jω) = − 1

Keq(a)

1. The negative reciprocal of the describing function for the hysteresis nonlinearity is

− 1

Keq(a)
= − 1

4N
aπ

[√
1− h2

a2 − j h
a

] = − π

4N
[
√
a2 − h2 + jh] = −π

4
[
√
a2 − 0.12 + j0.1]

2. This is a straight line parallel to the real axis that is parameterized as a function of the input signal
amplitude a and is also plotted in the following figure

3. We can also determine the limit-cycle information analytically:

− 1

Keq(a)
= −π

4
[
√
a2 − 0.12 + j0.1] = G(jω) =

1

jω(jω + 1)
=

1

−ω2 + jω

4. By solving above equations,

ω3 + ω =
40

π
≈ 12.73 a2 − 0.01 =

(
1

ω2 + 1

4

π

)2

we can get the solutions

∴ ωl = 2.2 and al = 0.24
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