Solutions of Final Exam

Subject : Control System Engineering 1, Lecturer : Prof. Youngjin Choi,
Date : June 19, 2020 (Contact e-mail : cyj@hanyang.ac.kr)

Problem 1 (20pt) Consider the following figure with $G(s)=\frac{1}{s(\tau s+1)}, D_{c}(s)=k_{P}+k_{D} s$ and $H(s)=1+k_{t} s$. Determine the system type and relevant error constant with respect to the reference inputs when $V=W=0$.

Solution of Problem 1 (20pt)
The error TF is

$$
\begin{aligned}
E(s) & =R(s)-\frac{D_{c} G}{1+D_{c} G H} R(s) \\
& =\left[1-\frac{\frac{k_{P}+k_{D} s}{s(\tau+1)}}{1+\frac{\left(k_{P}+k_{D} s\right)\left(1+k_{t} s\right)}{s(\tau s+1)}}\right] R(s) \\
& =\left[1-\frac{k_{P}+k_{D} s}{s(\tau s+1)+\left(k_{P}+k_{D} s\right)\left(1+k_{t} s\right)}\right] R(s) \\
& =\left[1-\frac{k_{P}+k_{D} s}{\left(\tau+k_{t} k_{D}\right) s^{2}+\left(k_{P} k_{t}+k_{D}+1\right) s+k_{P}}\right] R(s) \\
& =\frac{\left(\tau+k_{t} k_{D}\right) s^{2}+\left(k_{P} k_{t}+1\right) s}{\left(\tau+k_{t} k_{D}\right) s^{2}+\left(k_{P} k_{t}+k_{D}+1\right) s+k_{P}} R(s)
\end{aligned}
$$

The steady-state error for inputs (step, ramp, parabolic) becomes

$$
\begin{aligned}
& e_{s s}=\lim _{s \rightarrow 0} s \frac{s\left[\left(\tau+k_{t} k_{D}\right) s+\left(k_{P} k_{t}+1\right)\right]}{\left(\tau+k_{t} k_{D}\right) s^{2}+\left(k_{P} k_{t}+k_{D}+1\right) s+k_{P}} \frac{1}{s}=0 \\
& e_{s s}=\lim _{s \rightarrow 0} s \frac{s\left[\left(\tau+k_{t} k_{D}\right) s+\left(k_{P} k_{t}+1\right)\right]}{\left(\tau+k_{t} k_{D}\right) s^{2}+\left(k_{P} k_{t}+k_{D}+1\right) s+k_{P}} \frac{1}{s^{2}}=\frac{k_{P} k_{t}+1}{k_{P}} \quad \text { type } 1 \\
& e_{s s}=\lim _{s \rightarrow 0} s \frac{s\left[\left(\tau+k_{t} k_{D}\right) s+\left(k_{P} k_{t}+1\right)\right]}{\left(\tau+k_{t} k_{D}\right) s^{2}+\left(k_{P} k_{t}+k_{D}+1\right) s+k_{P}} \frac{1}{s^{3}}=\infty
\end{aligned}
$$

Thus, the "system type is 1 " and its velocity error constant becomes

$$
K_{v}=\frac{k_{P}}{k_{P} k_{t}+1}
$$

Problem 2 (20pt) Consider the controller of the form $D_{c}(s)=\frac{1}{s^{n}}$ with n being a non-negative integer. For what values of n is the closed-loop system stable?

Solution of Problem 2 (20pt) The characteristic equation becomes

$$
1+\frac{1}{s^{n}} \frac{10 s+5}{(s+8)(s-1)}=0 \quad \rightarrow \quad s^{n}\left(s^{2}+7 s-8\right)+10 s+5=0
$$

If $n=0$, the necessary condition is not satisfied

$$
s^{2}+17 s-3=0 \quad \text { unstable }
$$

If $n=1$, the necessary condition is satisfied

$$
s^{3}+7 s^{2}+2 s+5=0
$$

Let us take Routh Table to check the sufficient condition

$$
\begin{array}{lll}
s^{3}: & 1 & 2 \\
s^{2}: & 7 & 5 \\
s^{1}: & \frac{9}{7} & \\
s^{0}: & 5 &
\end{array}
$$

Since the sufficient condition is satisfied, the system when $n=1$ is stable
If $n=2$, the necessary condition is not satisfied

$$
s^{4}+7 s^{3}-8 s^{2}+10 s+5=0 \quad \text { unstable }
$$

If $n \geq 3$, the necessary condition is not satisfied

$$
s^{n+2}+7 s^{n+1}-8 s^{n}+\cdots+0 s^{2}+10 s+5=0 \quad \text { unstable }
$$

Problem 3 (20pt) Roughly sketch the root loci for the following pole-zero maps. Each pole-zero map is from a characteristic equation of the form:

$$
1+K \frac{b(s)}{a(s)}=0
$$

where the roots of the $b(s)$ are shown as small circles \circ and the roots of the $a(s)$ are shown as \times on the s-plane. Note, in figure (c), there are two poles at the origin.

(a)

(d)

(b)

(e)

(c)

(f)

Problem 4 (20pt) For the feedback system shown in the figure, find the value of the gain K that results in dominant closed-loop poles with a damping ratio $\zeta=\frac{1}{\sqrt{2}}$

Solution of Problem 4 (20pt) The transfer function becomes

$$
\begin{aligned}
\frac{Y(s)}{R(s)} & =\frac{\frac{10}{s(s+1)}}{1+\frac{10(1+K s)}{s(s+1)}} \\
& =\frac{10}{s^{2}+(10 K+1) s+10}
\end{aligned}
$$

From the characteristic equation, we know

$$
\omega_{n}=\sqrt{10} \quad \begin{aligned}
2 \zeta \omega_{n} & =10 K+1 \\
2 \sqrt{5} & =10 K+1 \quad \rightarrow \quad K=0.347
\end{aligned}
$$

Problem $5(20 \mathrm{pt})$ Draw the root locus with respect to K for the equation $1+K L(s)=0$, where the departure angles should be calculated and suggested.

$$
L(s)=\frac{s+3}{s(s+10)\left(s^{2}+2 s+2\right)}
$$

Solution of Problem 5 (20pt)

1. (Rule 1, Start and End)

$$
\begin{aligned}
& \text { when } K=0, \quad s=0,-10,-1 \pm j, \quad \text { poles of } L(s)=\frac{s+3}{s(s+10)\left(s^{2}+2 s+2\right)} \\
& \text { when } K=\infty, \quad s=-3, \infty, \infty, \infty \quad \text { zeros of } L(s)
\end{aligned}
$$

2. (Rule 2, Real Axis) Negative real axis of $-10 \leq s$ and $-3 \leq s \leq 0$ are loci
3. (Rule 3, Asymptotes)

$$
\phi_{l}=\frac{180^{\circ}+360(l-1)}{4-1}= \pm 60^{\circ}, \pm 180^{\circ} \quad \alpha=\frac{(-12)-(-3)}{3}=-3
$$

4. (Rule 4, Departure Angles and Arrival Angles)

$$
\begin{aligned}
\phi_{\text {dep },-1+j} & =\angle(-1+j-(-3))-\angle(-1+j-0)-\angle(-1+j-(-1-j))-\angle(-1+j-(-10))-180^{\circ} \\
& =\tan ^{-1} \frac{1}{2}-\left(180^{\circ}-\tan ^{-1} 1\right)-90^{\circ}-\tan ^{-1} \frac{1}{9}-180^{\circ} \\
& =26.5^{\circ}-\left(180^{\circ}-45^{\circ}\right)-90^{\circ}-6.3^{\circ}-180^{\circ}=-24.8^{\circ} \\
\phi_{\text {dep },-0.1-6.6 j} & =24.8^{\circ}
\end{aligned}
$$

5. (Rule 5, Break-in and Breakaway Points) No break-in and breakaway points.
6. Routh table from the characteristic equation : $s^{4}+12 s^{3}+22 s^{2}+(20+K) s+3 K=0$

$$
\begin{array}{lll}
s^{4}: 1 & 22 & 3 K \\
s^{3}: 12 & 20+K & \\
s^{2}: 22-\frac{20+K}{12} & 3 K & \\
s^{1}: 20+K-\frac{36 K}{22-\frac{20+K}{12}} & & \\
s^{0}: 3 K & &
\end{array}
$$

For $0<K<23$, the stability is guaranteed, but at $K=23$, the roots pass through the imaginary axis at $\omega= \pm 1.94 j$

