Solutions of Final Exam

Subject : Modern Robotics, Lecturer : Prof. Youngjin Choi,
Date : June 18, 2020 (Contact e-mail : cyj@hanyang.ac.kr)
Notice that the answers should be written only in English, otherwise you will get a zero point.

Problem 1 (30pt) Assume a five-bar linkage is in its zero position. Let $\left(p_{x}, p_{y}\right)$ be the position of the $\{\mathrm{b}\}$-frame origin expressed in $\{\mathrm{s}\}$-frame coordinates, and let ϕ be the orientation of the $\{\mathrm{b}\}$ frame. Find the forward kinematics Jacobian J_{a} from $\mathcal{V}_{s}=J_{a} \dot{q}_{a}$ when B, D are actuated, i.e, $\dot{q}_{a}=\left(\dot{\theta}_{2}, \dot{\psi}_{1}\right)$ and $\dot{q}_{p}=\left(\dot{\theta}_{1}, \dot{\theta}_{3}, \dot{\psi}_{2}\right)$. You may make use of the matrix inversion of $\left[\begin{array}{ccc}1 & 1 & -1 \\ 0 & 1 & -3 \\ -3 & -2 & 2\end{array}\right]^{-1}=\left[\begin{array}{ccc}-2 & 0 & -1 \\ 4.5 & -0.5 & 1.5 \\ 1.5 & -0.5 & 0.5\end{array}\right]$.

Solution of Problem 1 (30pt) Since

$$
\begin{aligned}
\mathcal{V}_{s} & =J_{1} \dot{\theta}=J_{2} \dot{\psi} \\
& =\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 0 & 1 \\
-3 & -2 & -2
\end{array}\right]\left[\begin{array}{c}
\dot{\theta}_{1} \\
\dot{\theta}_{2} \\
\dot{\theta}_{3}
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
3 & 3 \\
-3 & -2
\end{array}\right]\left[\begin{array}{l}
\dot{\psi}_{1} \\
\dot{\psi}_{2}
\end{array}\right]
\end{aligned}
$$

we can obtain the following relations

$$
\begin{aligned}
& J_{1} \dot{\theta}-J_{2} \dot{\psi}=0 \\
& H_{a} \dot{q}_{a}+H_{p} \dot{q}_{p}=0 \\
& {\left[\begin{array}{ccccc}
1 & 1 & 1 & -1 & -1 \\
0 & 0 & 1 & -3 & -3 \\
-3 & -2 & -2 & 3 & 2
\end{array}\right]\left[\begin{array}{c}
\dot{\theta}_{1} \\
\dot{\theta}_{2} \\
\dot{\theta}_{3} \\
\dot{\psi}_{1} \\
\dot{\psi}_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{cc}
1 & -1 \\
0 & -3 \\
-2 & 3
\end{array}\right]\left[\begin{array}{c}
\dot{\theta}_{2} \\
\dot{\psi}_{1}
\end{array}\right]+\left[\begin{array}{ccc}
1 & 1 & -1 \\
0 & 1 & -3 \\
-3 & -2 & 2
\end{array}\right]\left[\begin{array}{l}
\dot{\theta}_{1} \\
\dot{\theta}_{3} \\
\dot{\psi}_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]}
\end{aligned}
$$

Now, we have

$$
\begin{aligned}
\dot{q}_{p} & =-H_{p}^{-1} H_{a} \dot{q}_{a} \\
{\left[\begin{array}{c}
\dot{\theta}_{1} \\
\dot{\theta}_{3} \\
\dot{\psi}_{2}
\end{array}\right] } & =-\left[\begin{array}{ccc}
-2 & 0 & -1 \\
4.5 & -0.5 & 1.5 \\
1.5 & -0.5 & 0.5
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
0 & -3 \\
-2 & 3
\end{array}\right]\left[\begin{array}{c}
\dot{\theta}_{2} \\
\dot{\psi}_{1}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-1.5 & -1.5 \\
-0.5 & -1.5
\end{array}\right]\left[\begin{array}{c}
\dot{\theta}_{2} \\
\dot{\psi}_{1}
\end{array}\right]
\end{aligned}
$$

Thus

$$
\begin{aligned}
\mathcal{V}_{s} & =J_{1} \dot{\theta} \\
& =\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 0 & 1 \\
-3 & -2 & -2
\end{array}\right]\left[\begin{array}{l}
\dot{\theta}_{1} \\
\dot{\theta}_{2} \\
\dot{\theta}_{3}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 0 & 1 \\
-3 & -2 & -2
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \\
1 & 0 \\
-1.5 & -1.5
\end{array}\right]\left[\begin{array}{l}
\dot{\theta}_{2} \\
\dot{\psi}_{1}
\end{array}\right] \\
& =\left[\begin{array}{cc}
-0.5 & -0.5 \\
-1.5 & -1.5 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
\dot{\theta}_{2} \\
\dot{\psi}_{1}
\end{array}\right] \\
& =J_{a} \dot{q}_{a}
\end{aligned}
$$

Problem 2 (40pt) The figure illustrates an RP robot moving in a vertical plane. The mass of link 1 is $\mathrm{m}_{1}=1[\mathrm{~kg}]$ and the center of mass is a distance $L_{1}=1[m]$ from joint 1 . The scalar inertia of link 1 about an axis through the center of mass and out of the plane is $\mathcal{I}_{1}=1\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$. The mass of link 2 is $\mathrm{m}_{2}=1[\mathrm{~kg}]$, the center of mass is a distance θ_{2} from joint 1 , and the scalar inertia of link 2 about its center of mass is $\mathcal{I}_{2}=1\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$. Gravity g acts downward on the page. Derive the equation of motion?

$$
M(\theta) \ddot{\theta}+c(\theta, \dot{\theta})+g(\theta)=\tau
$$

Solution of Problem 2 (40pt) Positions of the center of mass of link i

$$
x_{1}=L_{1} \cos \theta_{1}=\cos \theta_{1} \quad y_{1}=L_{1} \sin \theta_{1}=\sin \theta_{1} \quad x_{2}=\theta_{2} \cos \theta_{1} \quad y_{2}=\theta_{2} \sin \theta_{1}
$$

Velocities of the center of mass of link i

$$
\dot{x}_{1}=-\dot{\theta}_{1} \sin \theta_{1} \quad \dot{y}_{1}=\dot{\theta}_{1} \cos \theta_{1} \quad \dot{x}_{2}=\dot{\theta}_{2} \cos \theta_{1}-\theta_{2} \dot{\theta}_{1} \sin \theta_{1} \quad \dot{y}_{2}=\dot{\theta}_{2} \sin \theta_{1}+\theta_{2} \dot{\theta}_{1} \cos \theta_{1}
$$

Kinetic energies of link i

$$
\begin{aligned}
\mathcal{K}_{1} & =\frac{1}{2} \mathrm{~m}_{1}\left(\dot{x}_{1}^{2}+\dot{y}_{1}^{2}\right)+\frac{1}{2} \mathcal{I}_{1} \dot{\theta}_{1}^{2}=\dot{\theta}_{1}^{2} \\
\mathcal{K}_{2} & =\frac{1}{2} \mathrm{~m}_{2}\left(\dot{x}_{2}^{2}+\dot{y}_{2}^{2}\right)+\frac{1}{2} \mathcal{I}_{2} \dot{\theta}_{1}^{2}=\frac{1}{2}\left(\left(1+\theta_{2}^{2}\right) \dot{\theta}_{1}^{2}+\dot{\theta}_{2}^{2}\right)
\end{aligned}
$$

Potential energies of link i

$$
\begin{aligned}
& \mathcal{P}_{1}=\mathrm{m}_{1} g y_{1}=g \sin \theta_{1} \\
& \mathcal{P}_{2}=\mathrm{m}_{2} g y_{2}=g \theta_{2} \sin \theta_{1}
\end{aligned}
$$

Lagrangian becomes

$$
\begin{aligned}
\mathcal{L} & =\mathcal{K}_{1}+\mathcal{K}_{2}-\mathcal{P}_{1}-\mathcal{P}_{2} \\
& =\frac{3}{2} \dot{\theta}_{1}^{2}+\frac{1}{2} \theta_{2}^{2} \dot{\theta}_{1}^{2}+\frac{1}{2} \dot{\theta}_{2}^{2}-g \sin \theta_{1}-g \theta_{2} \sin \theta_{1}
\end{aligned}
$$

The Euler-Lagrange equations for this example are of the form

$$
\begin{aligned}
\tau_{1} & =\frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{\theta}_{1}}-\frac{\partial \mathcal{L}}{\partial \theta_{1}} \\
& =\frac{d}{d t}\left(3 \dot{\theta}_{1}+\theta_{2}^{2} \dot{\theta}_{1}\right)+g \cos \theta_{1}+g \theta_{2} \cos \theta_{1} \\
& =3 \ddot{\theta}_{1}+2 \theta_{2} \dot{\theta}_{2} \dot{\theta}_{1}+\theta_{2}^{2} \ddot{\theta}_{1}+g \cos \theta_{1}+g \theta_{2} \cos \theta_{1} \\
\tau_{2} & =\frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{\theta}_{2}}-\frac{\partial \mathcal{L}}{\partial \theta_{2}} \\
& =\frac{d}{d t}\left(\dot{\theta}_{2}\right)-\theta_{2} \dot{\theta}_{1}^{2}+g \sin \theta_{1} \\
& =\ddot{\theta}_{2}-\theta_{2} \dot{\theta}_{1}^{2}+g \sin \theta_{1}
\end{aligned}
$$

Now we can complete the dynamics as follows:

$$
\begin{array}{r}
M(\theta) \ddot{\theta}+c(\theta, \dot{\theta})+g(\theta)=\tau \\
{\left[\begin{array}{cc}
3+\theta_{2}^{2} & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
\ddot{\theta}_{1} \\
\ddot{\theta}_{2}
\end{array}\right]+\left[\begin{array}{c}
2 \theta_{2} \dot{\theta}_{1} \dot{\theta}_{2} \\
-\theta_{2} \dot{\theta}_{1}^{2}
\end{array}\right]+\left[\begin{array}{c}
\left(1+\theta_{2}\right) g \cos \theta_{1} \\
g \sin \theta_{1}
\end{array}\right]=\left[\begin{array}{l}
\tau_{1} \\
\tau_{2}
\end{array}\right]}
\end{array}
$$

Problem 3 (30pt) For given a one-dof mass-spring-damper system of the form $\mathrm{m} \ddot{x}+b \dot{x}+k x=f$, where f is the control force and $\mathrm{m}=4[k g]$ and $b=2[N s / m]$ and $k=0.1[N / m]$, determine the gains k_{p} and k_{d} so that the following PD controller

$$
f=k_{d}\left(\dot{x}_{d}-\dot{x}\right)+k_{p}\left(x_{d}-x\right)
$$

can yield the critical damping and the 2% settling time of $0.01[s]$, where $x_{d}=1$ and $\dot{x}_{d}=0$.

Solution of Problem 3 (30pt) Let us obtain the error dynamics using $x_{e}=x_{d}-x, \dot{x}_{e}=-\dot{x}$, and $\ddot{x}_{e}=-\ddot{x}$

$$
\begin{aligned}
\mathrm{m} \ddot{x}+b \dot{x}+k x & =k_{d}\left(\dot{x}_{d}-\dot{x}\right)+k_{p}\left(x_{d}-x\right) \\
-\mathrm{m} \ddot{x}_{e}-b \dot{x}_{e}+k\left(x_{d}-x_{e}\right) & =k_{d} \dot{x}_{e}+k_{p} x_{e} \\
4 \ddot{x}_{e}+\left(k_{d}+2\right) \dot{x}_{e}+\left(k_{p}+0.1\right) x_{e} & =0.1 \\
\ddot{x}_{e}+\frac{k_{d}+2}{4} \dot{x}_{e}+\frac{k_{p}+0.1}{4} x_{e} & =0.025
\end{aligned}
$$

From the following relations, we have

$$
\omega_{n}^{2}=\frac{k_{p}+0.1}{4}
$$

$$
2 \zeta \omega_{n}=\frac{k_{d}+2}{4}
$$

Since $\zeta=1$ and $\frac{4}{\zeta \omega_{n}}=0.01$, we have

$$
k_{p}=639,999.9 \approx 6.4 \times 10^{5} \quad k_{d}=3,198
$$

