exercise 6.3 Find the IK?

exercise 6.4 Find θ_{2} and θ_{3} when $\theta_{1}=0$ and $p=\left[\begin{array}{c}-6 \\ 5 \\ \sqrt{3}\end{array}\right] ?$

Figure 6.11: An RRP open chain.
exercise 6.5 Find the IK from $p=\left(p_{x}, p_{y}, p_{z}\right)$ and the orientation of end-effector α when the joint 1 has a screw joint of pitch h ?

Figure 6.12: An open chain with a screw joint.
exercise 5.11 Find $\dot{\theta}_{1}, \dot{\theta}_{2}$ and $\dot{\theta}_{3}$ from $\dot{p}=\left[\begin{array}{c}10 \\ 0 \\ 0\end{array}\right]$?

Figure 5.21: A spatial 3R open chain.
exercise 5.21 Find $\mathcal{A}_{2}, \mathcal{A}_{4}$ and \mathcal{A}_{5} from the following FK?

$$
T_{o t}=e^{\left[\mathcal{A}_{1}\right] \theta_{1}} e^{\left[\mathcal{A}_{2}\right] \theta_{2}} M_{o c} e^{\left[\mathcal{A}_{3}\right] \theta_{3}} e^{\left[\mathcal{A}_{4}\right] \theta_{4}} M_{c t} e^{\left[\mathcal{A}_{5}\right] \theta_{5}} e^{\left[\mathcal{A}_{6}\right] \theta_{6}}
$$

(a) Rehabilitation robot ARMin III [123]. Figure courtesy of ETH Zürich.

(b) Kinematic model of the ARMin III.

Figure 5.31: The ARMin III rehabilitation robot.
exercise 6.11 Find IK of 3 R non-orthogonal chain?

Figure 6.15: A 3R nonorthogonal chain.
exercise 6.15 Solve the following optimization?

$$
\min _{x \in \Re^{n}} \frac{1}{2} x^{T} Q x+c^{T} x \quad \text { subject to } \quad H x=b
$$

use

$$
\left[\begin{array}{ll}
A & D \\
C & B
\end{array}\right]^{-1}=\left[\begin{array}{cc}
A^{-1}+E G^{-1} F & -E G^{-1} \\
-G^{-1} F & G^{-1}
\end{array}\right]
$$

where $G=B-C A^{-1} D, E=A^{-1} D$ and $F=C A^{-1}$

