2 Numerical Inverse Kinematics

- Iterative numerical methods can be applied if the IK equations do not admit analytic solutions.
- Even in cases where an analytic solution does exist, numerical methods are often used to improve the accuracy of these solutions.
- There exist a variety of iterative methods for finding the roots of a nonlinear equation, and our aim is to develop ways in which to transform the IK equations so that they become amenable to existing numerical methods.
- An approach fundamental to nonlinear root-finding will be Newton-Raphson method.
- We seek the closest approximate solution; or, conversely, an infinity of IK solutions exists (i.e., if the robot is kinematically redundant) and we seek a solution that is optimal with respect to some criterion.

2.1 Newton-Raphson Method

- To solve the equation $g(\theta) = 0$ numerically for a given differentiable function $g : \Re^n \to \Re^n$, assume $\theta^0 \in \Re^n$ is an initial guess for the solution.
- Write the Taylor expansion of $g(\theta)$ at $\theta = \theta^0$ and truncate it at first order:

$$g(\theta) = g(\theta^{0}) + \frac{\partial g}{\partial \theta^{T}}(\theta^{0})(\theta - \theta^{0}) + h.o.t \quad \text{where} \quad \frac{\partial g}{\partial \theta^{T}}(\theta^{0}) = \frac{\partial g}{\partial \left[\theta_{1} \dots \theta_{n}\right]} = \begin{bmatrix} \frac{\partial g_{1}}{\partial \theta_{1}}(\theta) & \cdots & \frac{\partial g_{1}}{\partial \theta_{n}}(\theta) \\ \vdots & \vdots \\ \frac{\partial g_{n}}{\partial \theta_{1}}(\theta) & \cdots & \frac{\partial g_{n}}{\partial \theta_{n}}(\theta) \end{bmatrix}$$

• Keeping only the terms up to first order, set $g(\theta)=0$ and solve for θ to obtain

$$\theta = \theta^0 - \left(\frac{\partial g}{\partial \theta^T}(\theta^0)\right)^{-1} g(\theta^0)$$

• Using this value of θ as the new guess for the solution and repeating the above, we get the following iteration:

$$\theta^{k+1} = \theta^k - \left(\frac{\partial g}{\partial \theta^T}(\theta^k)\right)^{-1} g(\theta^k)$$

• The above iteration is repeated until some stopping criterion is satisfied.

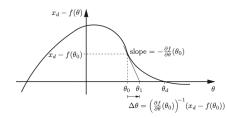


Figure 6.7: The first step of the Newton–Raphson method for nonlinear root-finding for a scalar x and θ . In the first step, the slope $-\partial f/\partial \theta$ is evaluated at the point $(\theta^0, x_d - f(\theta^0))$. In the second step, the slope is evaluated at the point $(\theta^1, x_d - f(\theta^1))$ and eventually the process converges to θ_d . Note that an initial guess to the left of the plateau of $x_d - f(\theta)$ would be likely to result in convergence to the other root of $x_d - f(\theta)$, and an initial guess at or near the plateau would result in a large initial $|\Delta \theta|$ and the iterative process might not converge at all.

2.2 Numerical Inverse Kinematics Algorithm

• For the Newton-Raphson method, let us define $g(\theta_d) = x_d - f(\theta_d)$ to find joint coordinates $\theta_d \in \Re^n$ from the desired end-effector coordinate $x_d \in \Re^m$

$$g(\theta_d) = x_d - f(\theta_d) = 0$$

• Given an initial guess θ^0 which is close to a solution θ_d , the kinematics can be expressed as the Taylor expansion

$$x_d = f(\theta_d) = f(\theta_0) + \left. \frac{\partial f}{\partial \theta^T} \right|_{\theta = \theta^0} (\theta_d - \theta^0) + h.o.t$$

• Let us define the Jacobian $J(\theta_0) = \frac{\partial f}{\partial \theta^T}\Big|_{\theta=\theta^0}$, then we have the approximate and iterative solution

$$\theta_d = \theta^0 + J^+(\theta_0)(x_d - f(\theta^0)) \quad \to \quad \theta^{k+1} = \theta^k + J^+(\theta_k)(x_d - f(\theta^k))$$

where $\theta^k \to \theta_d$ satisfying $x_d = f(\theta_d)$, as $k \to \infty$.

Pseudoinverse

Moore-Penrose pseudoinverse J^+ : consider the equation z = Jy with $y \in \Re^n$ and $z \in \Re^m$

- J is square and full rank, J^{-1} is obtained using LU decomposition
- J is fat (n > m) and full rank, $J^+ = J^T (JJ^T)^{-1}$ (right inverse) minimizes the two-norm $||y||^2$:

$$\min \frac{1}{2}y^T y$$
 subject to $z = Jy$

The optimization brings two-norm minimum solution

$$H = \frac{1}{2}y^{T}y + \lambda^{T}(z - Jy) \qquad \qquad \frac{\partial H}{\partial y} = y - J^{T}\lambda = 0$$
$$z = Jy = JJ^{T}\lambda \qquad \qquad \lambda = (JJ^{T})^{-1}z \qquad \qquad y = J^{T}\lambda = J^{T}(JJ^{T})^{-1}z = J^{+}z$$

If n > m then the solution is the smallest joint variable change (in the two-norm sense) that exactly satisfies Equation z = Jy

• J is thin (tall) (n < m) and full rank, $J^+ = (J^T J)^{-1} J^T$ (left inverse) minimizes the error two-norm $||z - Jy||^2$

$$H = \frac{1}{2}(z - Jy)^T(z - Jy) \qquad \qquad \frac{\partial H}{\partial y} = -J^T z + J^T Jy = 0 \qquad \qquad y = (JJ^T)^{-1} J^T z = J^+ z$$

If n < m then the solution may not exactly satisfy Equation z = Jy, but it satisfies this condition as closely as possible in a least-squares sense.

Numerical IK using Newton-Raphson Method

- 1. Initialization: Given $x_d \in \Re^m$ and an initial guess $\theta^0 \in \Re^n$, set i = 0
- 2. Set $e = x_d f(\theta^i)$, while $||e|| > \epsilon$ for some small ϵ
 - Set $\theta^{i+1} = \theta^i + J^+(\theta_i)e$
 - Increment i

- To modify this algorithm to work with a desired end-effector configuration represented as $T_{sd} \in SE(3)$ instead of a coordinate vector x_d , we can replace the coordinate Jacobian J with the end-effector body Jacobian $J_b \in \Re^{6 \times n}$.
- Note that the vector $e = x_d f(\theta^i)$, representing the direction from the current guess (evaluated through the forward kinematics) to the desired end-effector configuration, cannot simply be replaced by $T_{sd} T_{sb}(\theta^i)$; the pseudoinverse of J_b should act on a body twist $\mathcal{V}_b \in \Re^6$.
- To find the right analogy, we should think of $e = x_d f(\theta^i)$ as a velocity vector which, if followed for unit time, would cause a motion from $f(\theta^i)$ to x_d .
- Similarly, we should look for a body twist \mathcal{V}_b which, if followed for unit time, would cause a motion from $T_{sb}(\theta^i)$ to the desired configuration T_{sd} .
- To find this \mathcal{V}_b , we first calculate the desired configuration in the body frame,

$$T_{bd}(\theta^i) = T_{sb}^{-1}(\theta^i) T_{sd} = T_{bs}(\theta^i) T_{sd}$$

• Then \mathcal{V}_b is determined using the matrix logarithm,

$$[\mathcal{V}_b] = \log T_{bd}(\theta^i).$$

This leads to the following IK algorithm, which is analogous to the above coordinate-vector algorithm:

- 1. Initialization: Given $T_{sd} \in SE(3)$ and an initial guess $\theta^0 \in \Re^n$, set i = 0
- 2. Set $[\mathcal{V}_b] = \log(T_{sb}^{-1}(\theta^i)T_{sd})$, while $\|\omega_b\| > \epsilon_\omega$ or $\|v_b\| > \epsilon_v$ for some small ϵ_ω , ϵ_v :
 - Set $\theta^{i+1} = \theta^i + J_b^+(\theta_i)\mathcal{V}_b$
 - Increment *i*

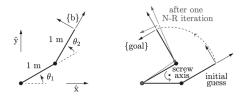


Figure 6.8: (Left) A 2R robot. (Right) The goal is to find the joint angles yielding the end-effector frame {goal} corresponding to $\theta_1 = 30^\circ$ and $\theta_2 = 90^\circ$. The initial guess is $(0^\circ, 30^\circ)$. After one Newton–Raphson iteration, the calculated joint angles are $(34.23^\circ, 79.18^\circ)$. The screw axis that takes the initial frame to the goal frame (by means of the curved dashed line) is also indicated.

Example 6.1. (Planar 2R robot). Now we apply the body Jacobian Newton-Raphson IK algorithm to the 2R robot. Each link is 1m in length, and we would like to find the joint angles that place the tip of the robot at $(x_d, y_d) = (0.366m, 1.366m)$, which corresponds to $\theta_d = (30^\circ, 90^\circ)$ and

$$T_{sd} = \begin{bmatrix} -0.5 & -0.866 & 0 & 0.366 \\ 0.866 & -0.5 & 0 & 1.366 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• The forward kinematics, expressed in the end-effector frame, is given by

- -

- -

- Our initial guess at the solution is $\theta^0 = (0^\circ, 30^\circ)$, and we specify an error tolerance of $\epsilon_{\omega} = 0.001 rad (or 0.057^\circ)$ and $\epsilon_v = 10^{-4} m (100 \ microns)$.
- The progress of the Newton-Raphson method is illustrated in the table below

i	$(heta_1, heta_2)$	(x,y)	$\mathcal{V}_b = (\omega_{zb}, v_{xb}, v_{yb})$	$\ \omega_b\ $	$\ v_b\ $
0	$(0.00, 30.00^\circ)$	(1.866, 0.500)	(1.571, 0.498, 1.858)	1.571	1.924
1	$(34.23^{\circ}, 79.18^{\circ})$	(0.429, 1.480)	(0.115, -0.074, 0.108)	0.115	0.131
2	$(29.98^{\circ}, 90.22^{\circ})$	(0.363, 1.364)	(-0.004, 0.000, -0.004)	0.004	0.004
3	$(30.00^\circ, 90.00^\circ)$	(0.366, 1.366)	(0.000, 0.000, 0.000)	0.000	0.000

- The iterative procedure converges to within the tolerances after three iterations.
- The constant body velocity \mathcal{V}_b that takes the initial guess to {goal} in one second is a rotation about the screw axis indicated in the figure.

3 Inverse Velocity Kinematics

• One solution for controlling a robot so that it follows a desired end-effector trajectory $T_{sd}(t)$ is to calculate the IK $\theta_d(k\Delta t)$ at each discrete timestep k, then control the joint velocities $\dot{\theta}$ as follows

$$\dot{\theta} = \frac{\theta_d(k\Delta t) - \theta((k-1)\Delta t)}{\Delta t}$$

This amounts to a feedback controller since the desired new joint angles $\theta_d(k\Delta t)$ are being compared with the most recently measured actual joint angles $\theta((k-1)\Delta t)$ in order to calculate the required joint velocities.

• Another option that avoids the computation of IK is to calculate the required joint velocities $\dot{\theta}$ directly from the relationship $\dot{\theta} = J^+ \mathcal{V}_d$, The desired twist $\mathcal{V}_d(t)$ can be chosen to be $T_{sd}^{-1}(t)\dot{T}_{sd}(t)$ (the body twist of the desired trajectory at time t) or $\dot{T}_{sd}(t)T_{sd}^{-1}(t)$ (the spatial twist), depending on whether the body Jacobian or space Jacobian is used; however small velocity errors are likely to accumulate over time, resulting in increasing position error. Thus, a position feedback controller should choose $\mathcal{V}_d(t)$ so as to keep the end-effector following $T_{sd}(t)$ with little position error.

Pseudoinverse

The use of the pseudoinverse $J^+(\theta)$ returns joint velocities $\dot{\theta}$ minimizing the two-norm $\|\dot{\theta}\|$

min
$$\frac{1}{2}\dot{\theta}^T\dot{\theta}$$
 subject to $\mathcal{V}_d = J\dot{\theta}$

$$H = \frac{1}{2}\dot{\theta}^{T}\dot{\theta} + \lambda^{T}(\mathcal{V}_{d} - J\dot{\theta})$$
$$\frac{\partial H}{\partial \dot{\theta}} = \dot{\theta} - J^{T}\lambda = 0$$
$$\mathcal{V}_{d} = J\dot{\theta} = JJ^{T}\lambda$$
$$\lambda = (JJ^{T})^{-1}\mathcal{V}_{d}$$
$$\dot{\theta} = J^{T}\lambda = J^{T}(JJ^{T})^{-1}\mathcal{V}_{d} = J^{+}\mathcal{V}_{d}$$

Inertia-weighted Pseudoinverse

Let us find the joint velocities $\dot{\theta}$ minimizing the kinetic energy $\frac{1}{2}\dot{\theta}^T M(\theta)\dot{\theta}$

$$\min \ rac{1}{2} \dot{ heta}^T M(heta) \dot{ heta} \qquad ext{subject to} \quad \mathcal{V}_d = J \dot{ heta}$$

$$H = \frac{1}{2}\dot{\theta}^{T}M(\theta)\dot{\theta} + \lambda^{T}(\mathcal{V}_{d} - J\dot{\theta})$$

$$\frac{\partial H}{\partial \dot{\theta}} = M(\theta)\dot{\theta} - J^{T}\lambda = 0$$

$$\mathcal{V}_{d} = J\dot{\theta} = JM^{-1}J^{T}\lambda$$

$$\lambda = (JM^{-1}J^{T})^{-1}\mathcal{V}_{d}$$

$$\dot{\theta} = M^{-1}J^{T}\lambda = M^{-1}J^{T}(JM^{-1}J^{T})^{-1}\mathcal{V}_{d} = J_{M}^{+}\mathcal{V}_{d}$$

where $J_M^+ = M^{-1} J^T (J M^{-1} J^T)^{-1}$

Weighted Pseudoinverse

Let us find the joint velocities $\dot{\theta}$ minimizing the kinetic energy plus the rate of change of the potential energy

$$\frac{1}{2}\dot{\theta}^T M(\theta)\dot{\theta} + \nabla h(\theta)^T \dot{\theta}$$

where $h(\theta)$ could be the gravitational potential energy, or an artificial potential function whose value increases as the robot approaches an obstacle. The rate of change of $h(\theta)$ is

$$\frac{d}{dt}h(\theta) = \frac{dh(\theta)}{d\theta^T}\frac{d\theta}{dt} = \nabla h(\theta)^T\dot{\theta}$$

min
$$\frac{1}{2}\dot{\theta}^T M(\theta)\dot{\theta} + \nabla h(\theta)^T\dot{\theta}$$
 subject to $\mathcal{V}_d = J\dot{\theta}$

$$\begin{split} H &= \frac{1}{2} \dot{\theta}^T M(\theta) \dot{\theta} + \nabla h(\theta)^T \dot{\theta} + \lambda^T (\mathcal{V}_d - J\dot{\theta}) \\ \frac{\partial H}{\partial \dot{\theta}} &= M(\theta) \dot{\theta} + \nabla h - J^T \lambda = 0 \\ \mathcal{V}_d &= J \dot{\theta} = J M^{-1} (J^T \lambda - \nabla h) = J M^{-1} J^T \lambda - J M^{-1} \nabla h \\ \lambda &= (J M^{-1} J^T)^{-1} (\mathcal{V}_d + J M^{-1} \nabla h) \\ \dot{\theta} &= M^{-1} (J^T \lambda - \nabla h) = M^{-1} J^T (J M^{-1} J^T)^{-1} \mathcal{V}_d + M^{-1} J^T (J M^{-1} J^T)^{-1} J M^{-1} \nabla h - M^{-1} \nabla h \\ &= J_M^+ \mathcal{V}_d + (I - J_M^+ J) M^{-1} (-\nabla h) \end{split}$$

Interpretation of J_M^+

With $J_M^+ = M^{-1}J^T(JM^{-1}J^T)^{-1}$, the kinematic resolution of

$$\lambda = (JM^{-1}J^T)^{-1}(\mathcal{V}_d + JM^{-1}\nabla h)$$
$$\dot{\theta} = J_M^+\mathcal{V}_d + (I - J_M^+J)M^{-1}(-\nabla h)$$

- The Lagrange multiplier λ (see Appendix D) can be interpreted as a wrench in task space, from $\tau = J^T \mathcal{F}$
- Moreover, in the expression $\lambda = (JM^{-1}J^T)^{-1}(\mathcal{V}_d + JM^{-1}\nabla h)$,
 - the first term, $(JM^{-1}J^T)^{-1}\mathcal{V}_d$, can be interpreted as a dynamic force generating the end-effector velocity \mathcal{V}_d
 - the second term, $(JM^{-1}J^T)^{-1}JM^{-1}\nabla h$, can be interpreted as the static wrench counteracting gravity.

4 Homework : Chapter 6

• Please solve and submit Exercise 6.3, 6.4, 6.5, 6.6, 6.8, 6.10, 6.11, 7.15 , till May 10th (upload it as a pdf form or email me)