2 Numerical Inverse Kinematics

- Iterative numerical methods can be applied if the IK equations do not admit analytic solutions.
- Even in cases where an analytic solution does exist, numerical methods are often used to improve the accuracy of these solutions.
- There exist a variety of iterative methods for finding the roots of a nonlinear equation, and our aim is to develop ways in which to transform the IK equations so that they become amenable to existing numerical methods.
- An approach fundamental to nonlinear root-finding will be Newton-Raphson method.
- We seek the closest approximate solution; or, conversely, an infinity of IK solutions exists (i.e., if the robot is kinematically redundant) and we seek a solution that is optimal with respect to some criterion.

2.1 Newton-Raphson Method

- To solve the equation $g(\theta)=0$ numerically for a given differentiable function $g: \Re^{n} \rightarrow \Re^{n}$, assume $\theta^{0} \in \Re^{n}$ is an initial guess for the solution.
- Write the Taylor expansion of $g(\theta)$ at $\theta=\theta^{0}$ and truncate it at first order:

$$
g(\theta)=g\left(\theta^{0}\right)+\frac{\partial g}{\partial \theta^{T}}\left(\theta^{0}\right)\left(\theta-\theta^{0}\right)+\text { h.o.t } \quad \text { where } \quad \frac{\partial g}{\partial \theta^{T}}\left(\theta^{0}\right)=\frac{\partial\left[\begin{array}{c}
g_{1} \\
\vdots \\
g_{n}
\end{array}\right]}{\partial\left[\begin{array}{ccc}
\theta_{1} & \ldots & \theta_{n}
\end{array}\right]}=\left[\begin{array}{ccc}
\frac{\partial g_{1}}{\partial \theta_{1}}(\theta) & \cdots & \frac{\partial g_{1}}{\partial \theta_{n}}(\theta) \\
\vdots & & \vdots \\
\frac{\partial g_{n}}{\partial \theta_{1}}(\theta) & \cdots & \frac{\partial g_{n}}{\partial \theta_{n}}(\theta)
\end{array}\right]
$$

- Keeping only the terms up to first order, set $g(\theta)=0$ and solve for θ to obtain

$$
\theta=\theta^{0}-\left(\frac{\partial g}{\partial \theta^{T}}\left(\theta^{0}\right)\right)^{-1} g\left(\theta^{0}\right)
$$

- Using this value of θ as the new guess for the solution and repeating the above, we get the following iteration:

$$
\theta^{k+1}=\theta^{k}-\left(\frac{\partial g}{\partial \theta^{T}}\left(\theta^{k}\right)\right)^{-1} g\left(\theta^{k}\right)
$$

- The above iteration is repeated until some stopping criterion is satisfied.

Figure 6.7: The first step of the Newton-Raphson method for nonlinear root-finding
for a scalar x and θ. In the first sten the slope
for a scalar x and θ. In the first step, the slope - $\partial f / \partial \theta$ is evaluated at the point
$\left(\theta^{0}, x_{d}-f\left(\theta^{0}\right)\right.$. In the second step, the slope is evaluated at the point $\left(\theta^{1}, x_{d}-f\left(\theta^{1}\right)\right)$
$\left(\theta^{0}, x_{d}-f\left(\theta^{\circ}\right)\right)$. In the second step, the slope is evaluated at the point $\left(\theta^{\prime}, x_{d}-f\left(\theta^{(}\right)\right.$
and eventually the process converges to θ_{d}. Note that an initial guess to the left of
the plateau of $x_{d}-f(\theta)$ would be likely to result in convergence to the other root of
$x_{d}-f(\theta)$, and an initial guess at or near the plateau would result in a large initial
$|\Delta \theta|$ and the iterative process might not converge at all.

2.2 Numerical Inverse Kinematics Algorithm

- For the Newton-Raphson method, let us define $g\left(\theta_{d}\right)=x_{d}-f\left(\theta_{d}\right)$ to find joint coordinates $\theta_{d} \in \Re^{n}$ from the desired end-effector coordinate $x_{d} \in \Re^{m}$

$$
g\left(\theta_{d}\right)=x_{d}-f\left(\theta_{d}\right)=0
$$

- Given an initial guess θ^{0} which is close to a solution θ_{d}, the kinematics can be expressed as the Taylor expansion

$$
x_{d}=f\left(\theta_{d}\right)=f\left(\theta_{0}\right)+\left.\frac{\partial f}{\partial \theta^{T}}\right|_{\theta=\theta^{0}}\left(\theta_{d}-\theta^{0}\right)+\text { h.o.t }
$$

- Let us define the Jacobian $J\left(\theta_{0}\right)=\left.\frac{\partial f}{\partial \theta^{T}}\right|_{\theta=\theta^{0}}$, then we have the approximate and iterative solution

$$
\theta_{d}=\theta^{0}+J^{+}\left(\theta_{0}\right)\left(x_{d}-f\left(\theta^{0}\right)\right) \quad \rightarrow \quad \theta^{k+1}=\theta^{k}+J^{+}\left(\theta_{k}\right)\left(x_{d}-f\left(\theta^{k}\right)\right)
$$

where $\theta^{k} \rightarrow \theta_{d}$ satisfying $x_{d}=f\left(\theta_{d}\right)$, as $k \rightarrow \infty$.

Pseudoinverse

Moore-Penrose pseudoinverse J^{+}: consider the equation $z=J y$ with $y \in \Re^{n}$ and $z \in \Re^{m}$

- J is square and full rank, J^{-1} is obtained using LU decomposition
- J is fat $(n>m)$ and full rank, $J^{+}=J^{T}\left(J J^{T}\right)^{-1}$ (right inverse) minimizes the two-norm $\|y\|^{2}$:

$$
\min \frac{1}{2} y^{T} y \quad \text { subject to } \quad z=J y
$$

The optimization brings two-norm minimum solution

$$
\begin{aligned}
H & =\frac{1}{2} y^{T} y+\lambda^{T}(z-J y) & \frac{\partial H}{\partial y} & =y-J^{T} \lambda=0 \\
z & =J y=J J^{T} \lambda & \lambda & =\left(J J^{T}\right)^{-1} z
\end{aligned} \quad y=J^{T} \lambda=J^{T}\left(J J^{T}\right)^{-1} z=J^{+} z
$$

If $n>m$ then the solution is the smallest joint variable change (in the two-norm sense) that exactly satisfies Equation $z=J y$

- J is thin (tall) $(n<m)$ and full rank, $J^{+}=\left(J^{T} J\right)^{-1} J^{T}$ (left inverse) minimizes the error two-norm $\|z-J y\|^{2}$

$$
H=\frac{1}{2}(z-J y)^{T}(z-J y) \quad \frac{\partial H}{\partial y}=-J^{T} z+J^{T} J y=0 \quad y=\left(J J^{T}\right)^{-1} J^{T} z=J^{+} z
$$

If $n<m$ then the solution may not exactly satisfy Equation $z=J y$, but it satisfies this condition as closely as possible in a least-squares sense.

Numerical IK using Newton-Raphson Method

1. Initialization: Given $x_{d} \in \Re^{m}$ and an initial guess $\theta^{0} \in \Re^{n}$, set $i=0$
2. Set $e=x_{d}-f\left(\theta^{i}\right)$, while $\|e\|>\epsilon$ for some small ϵ

- Set $\theta^{i+1}=\theta^{i}+J^{+}\left(\theta_{i}\right) e$
- Increment i
- To modify this algorithm to work with a desired end-effector configuration represented as $T_{s d} \in$ $S E(3)$ instead of a coordinate vector x_{d}, we can replace the coordinate Jacobian J with the endeffector body Jacobian $J_{b} \in \Re^{6 \times n}$.
- Note that the vector $e=x_{d}-f\left(\theta^{i}\right)$, representing the direction from the current guess (evaluated through the forward kinematics) to the desired end-effector configuration, cannot simply be replaced by $T_{s d}-T_{s b}\left(\theta^{i}\right)$; the pseudoinverse of J_{b} should act on a body twist $\mathcal{V}_{b} \in \Re^{6}$.
- To find the right analogy, we should think of $e=x_{d}-f\left(\theta^{i}\right)$ as a velocity vector which, if followed for unit time, would cause a motion from $f\left(\theta^{i}\right)$ to x_{d}.
- Similarly, we should look for a body twist \mathcal{V}_{b} which, if followed for unit time, would cause a motion from $T_{s b}\left(\theta^{i}\right)$ to the desired configuration $T_{s d}$.
- To find this \mathcal{V}_{b}, we first calculate the desired configuration in the body frame,

$$
T_{b d}\left(\theta^{i}\right)=T_{s b}^{-1}\left(\theta^{i}\right) T_{s d}=T_{b s}\left(\theta^{i}\right) T_{s d}
$$

- Then \mathcal{V}_{b} is determined using the matrix logarithm,

$$
\left[\mathcal{V}_{b}\right]=\log T_{b d}\left(\theta^{i}\right) .
$$

This leads to the following IK algorithm, which is analogous to the above coordinate-vector algorithm:

1. Initialization: Given $T_{s d} \in S E(3)$ and an initial guess $\theta^{0} \in \Re^{n}$, set $i=0$
2. Set $\left[\mathcal{V}_{b}\right]=\log \left(T_{s b}^{-1}\left(\theta^{i}\right) T_{s d}\right)$, while $\left\|\omega_{b}\right\|>\epsilon_{\omega}$ or $\left\|v_{b}\right\|>\epsilon_{v}$ for some small $\epsilon_{\omega}, \epsilon_{v}$:

- $\operatorname{Set} \theta^{i+1}=\theta^{i}+J_{b}^{+}\left(\theta_{i}\right) \mathcal{V}_{b}$
- Increment i

Figure 6.8: (Left) A 2R robot. (Right) The goal is to find the joint angles yielding
the end-effector frame \{goal\} corresponding to $\theta_{1}=30^{\circ}$ and $\theta_{2}=90^{\circ}$. The initial
are ($34.23^{\circ}, 79.18^{\circ}$). The screw axis that takes the initial frame to the goal frame (by
means of the curved dashed line) is also indicated.

Example 6.1. (Planar $2 R$ robot). Now we apply the body Jacobian Newton-Raphson IK algorithm to the $2 R$ robot. Each link is 1 m in length, and we would like to find the joint angles that place the tip of the robot at $\left(x_{d}, y_{d}\right)=(0.366 \mathrm{~m}, 1.366 \mathrm{~m})$, which corresponds to $\theta_{d}=\left(30^{\circ}, 90^{\circ}\right)$ and

$$
T_{\text {sd }}=\left[\begin{array}{cccc}
-0.5 & -0.866 & 0 & 0.366 \\
0.866 & -0.5 & 0 & 1.366 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- The forward kinematics, expressed in the end-effector frame, is given by

$$
M=\left[\begin{array}{llll}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\mathcal{B}_{1}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
2 \\
0
\end{array}\right]
$$

$$
\mathcal{B}_{2}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
1 \\
0
\end{array}\right]
$$

- Our initial guess at the solution is $\theta^{0}=\left(0^{\circ}, 30^{\circ}\right)$, and we specify an error tolerance of $\epsilon_{\omega}=$ 0.001 rad (or 0.057°) and $\epsilon_{v}=10^{-4} \mathrm{~m}$ (100 microns).
- The progress of the Newton-Raphson method is illustrated in the table below

i	$\left(\theta_{1}, \theta_{2}\right)$	(x, y)	$\mathcal{V}_{b}=\left(\omega_{z b}, v_{x b}, v_{y b}\right)$	$\left\\|\omega_{b}\right\\|$	$\left\\|v_{b}\right\\|$
0	$\left(0.00,30.00^{\circ}\right)$	$(1.866,0.500)$	$(1.571,0.498,1.858)$	1.571	1.924
1	$\left(34.23^{\circ}, 79.18^{\circ}\right)$	$(0.429,1.480)$	$(0.115,-0.074,0.108)$	0.115	0.131
2	$\left(29.98^{\circ}, 90.22^{\circ}\right)$	$(0.363,1.364)$	$(-0.004,0.000,-0.004)$	0.004	0.004
3	$\left(30.00^{\circ}, 90.00^{\circ}\right)$	$(0.366,1.366)$	$(0.000,0.000,0.000)$	0.000	0.000

- The iterative procedure converges to within the tolerances after three iterations.
- The constant body velocity \mathcal{V}_{b} that takes the initial guess to $\{$ goal \} in one second is a rotation about the screw axis indicated in the figure.

3 Inverse Velocity Kinematics

- One solution for controlling a robot so that it follows a desired end-effector trajectory $T_{s d}(t)$ is to calculate the IK $\theta_{d}(k \Delta t)$ at each discrete timestep k, then control the joint velocities $\dot{\theta}$ as follows

$$
\dot{\theta}=\frac{\theta_{d}(k \Delta t)-\theta((k-1) \Delta t)}{\Delta t}
$$

This amounts to a feedback controller since the desired new joint angles $\theta_{d}(k \Delta t)$ are being compared with the most recently measured actual joint angles $\theta((k-1) \Delta t)$ in order to calculate the required joint velocities.

- Another option that avoids the computation of IK is to calculate the required joint velocities $\dot{\theta}$ directly from the relationship $\dot{\theta}=J^{+} \mathcal{V}_{d}$, The desired twist $\mathcal{V}_{d}(t)$ can be chosen to be $T_{s d}^{-1}(t) \dot{T}_{s d}(t)$ (the body twist of the desired trajectory at time t) or $\dot{T}_{s d}(t) T_{s d}^{-1}(t)$ (the spatial twist), depending on whether the body Jacobian or space Jacobian is used; however small velocity errors are likely to accumulate over time, resulting in increasing position error. Thus, a position feedback controller should choose $\mathcal{V}_{d}(t)$ so as to keep the end-effector following $T_{s d}(t)$ with little position error.

Pseudoinverse

The use of the pseudoinverse $J^{+}(\theta)$ returns joint velocities $\dot{\theta}$ minimizing the two-norm $\|\dot{\theta}\|$

$$
\begin{aligned}
& \min \frac{1}{2} \dot{\theta}^{T} \dot{\theta} \quad \text { subject to } \quad \mathcal{V}_{d}=J \dot{\theta} \\
& H=\frac{1}{2} \dot{\theta}^{T} \dot{\theta}+\lambda^{T}\left(\mathcal{V}_{d}-J \dot{\theta}\right) \\
& \frac{\partial H}{\partial \dot{\theta}}=\dot{\theta}-J^{T} \lambda=0 \\
& \mathcal{V}_{d}=J \dot{\theta}=J J^{T} \lambda \\
& \lambda=\left(J J^{T}\right)^{-1} \mathcal{V}_{d} \\
& \dot{\theta}=J^{T} \lambda=J^{T}\left(J J^{T}\right)^{-1} \mathcal{V}_{d}=J^{+} \mathcal{V}_{d}
\end{aligned}
$$

Inertia-weighted Pseudoinverse

Let us find the joint velocities $\dot{\theta}$ minimizing the kinetic energy $\frac{1}{2} \dot{\theta}^{T} M(\theta) \dot{\theta}$

$$
\begin{aligned}
& \min \frac{1}{2} \dot{\theta}^{T} M(\theta) \dot{\theta} \quad \text { subject to } \quad \mathcal{V}_{d}=J \dot{\theta} \\
& H=\frac{1}{2} \dot{\theta}^{T} M(\theta) \dot{\theta}+\lambda^{T}\left(\mathcal{V}_{d}-J \dot{\theta}\right) \\
& \frac{\partial H}{\partial \dot{\theta}}=M(\theta) \dot{\theta}-J^{T} \lambda=0 \\
& \mathcal{V}_{d}=J \dot{\theta}=J M^{-1} J^{T} \lambda \\
& \lambda=\left(J M^{-1} J^{T}\right)^{-1} \mathcal{V}_{d} \\
& \dot{\theta}=M^{-1} J^{T} \lambda=M^{-1} J^{T}\left(J M^{-1} J^{T}\right)^{-1} \mathcal{V}_{d}=J_{M}^{+} \mathcal{V}_{d}
\end{aligned}
$$

where $J_{M}^{+}=M^{-1} J^{T}\left(J M^{-1} J^{T}\right)^{-1}$

Weighted Pseudoinverse

Let us find the joint velocities $\dot{\theta}$ minimizing the kinetic energy plus the rate of change of the potential energy

$$
\frac{1}{2} \dot{\theta}^{T} M(\theta) \dot{\theta}+\nabla h(\theta)^{T} \dot{\theta}
$$

where $h(\theta)$ could be the gravitational potential energy, or an artificial potential function whose value increases as the robot approaches an obstacle. The rate of change of $h(\theta)$ is

$$
\begin{aligned}
& \qquad \frac{d}{d t} h(\theta)=\frac{d h(\theta)}{d \theta^{T}} \frac{d \theta}{d t}=\nabla h(\theta)^{T} \dot{\theta} \\
& \min \frac{1}{2} \dot{\theta}^{T} M(\theta) \dot{\theta}+\nabla h(\theta)^{T} \dot{\theta} \quad \text { subject to } \quad \mathcal{V}_{d}=J \dot{\theta} \\
& H
\end{aligned} \quad \begin{aligned}
& \frac{1}{2} \dot{\theta}^{T} M(\theta) \dot{\theta}+\nabla h(\theta)^{T} \dot{\theta}+\lambda^{T}\left(\mathcal{V}_{d}-J \dot{\theta}\right) \\
& \frac{\partial H}{\partial \dot{\theta}}=M(\theta) \dot{\theta}+\nabla h-J^{T} \lambda=0 \\
& \mathcal{V}_{d}=J \dot{\theta}=J M^{-1}\left(J^{T} \lambda-\nabla h\right)=J M^{-1} J^{T} \lambda-J M^{-1} \nabla h \\
& \lambda=\left(J M^{-1} J^{T}\right)^{-1}\left(\mathcal{V}_{d}+J M^{-1} \nabla h\right) \\
& \dot{\theta}=M^{-1}\left(J^{T} \lambda-\nabla h\right)=M^{-1} J^{T}\left(J M^{-1} J^{T}\right)^{-1} \mathcal{V}_{d}+M^{-1} J^{T}\left(J M^{-1} J^{T}\right)^{-1} J M^{-1} \nabla h-M^{-1} \nabla h \\
&=J_{M}^{+} \mathcal{V}_{d}+\left(I-J_{M}^{+} J\right) M^{-1}(-\nabla h)
\end{aligned}
$$

Interpretation of J_{M}^{+}

With $J_{M}^{+}=M^{-1} J^{T}\left(J M^{-1} J^{T}\right)^{-1}$, the kinematic resolution of

$$
\begin{aligned}
& \lambda=\left(J M^{-1} J^{T}\right)^{-1}\left(\mathcal{V}_{d}+J M^{-1} \nabla h\right) \\
& \dot{\theta}=J_{M}^{+} \mathcal{V}_{d}+\left(I-J_{M}^{+} J\right) M^{-1}(-\nabla h)
\end{aligned}
$$

- The Lagrange multiplier λ (see Appendix D) can be interpreted as a wrench in task space, from $\tau=J^{T} \mathcal{F}$
- Moreover, in the expression $\lambda=\left(J M^{-1} J^{T}\right)^{-1}\left(\mathcal{V}_{d}+J M^{-1} \nabla h\right)$,
- the first term, $\left(J M^{-1} J^{T}\right)^{-1} \mathcal{V}_{d}$, can be interpreted as a dynamic force generating the endeffector velocity \mathcal{V}_{d}
- the second term, $\left(J M^{-1} J^{T}\right)^{-1} J M^{-1} \nabla h$, can be interpreted as the static wrench counteracting gravity.

4 Homework : Chapter 6

- Please solve and submit Exercise 6.3, 6.4, 6.5, 6.6, 6.8, 6.10, 6.11, 7.15 , till May 10th (upload it as a pdf form or email me)

