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Inverse Kinematics (IK)

• For a general n DoF open chain with FK T (✓) 2 SE(3), ✓ 2 <n, the IK problem can be stated as:

given a homogeneous transform X 2 SE(3), find solutions ✓ that satisfy T (✓) = X.

For example, the number of IK solutions will be zero, one, and two. When there are two solutions,
they are called lefty and righty solutions, or elbow-up and elbow-down solutions.
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• Using the law of cosines, we have
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• Using � = atan2(y, x) = tan�1 y
x in the range (�⇡, ⇡], the righty solution becomes

✓1 = � � ↵ ✓2 = ⇡ � �

• The lefty solution is

✓1 = � + ↵ ✓2 = �⇡ + �

• If x2 + y2 lies outside the range [L1 � L2, L1 + L2], then no solution exists.
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1 Analytic Inverse Kinematics
• Let us consider the FK of a spatial six-dof open chain in the following PoE form:

T (✓) = e[S1]✓1e[S2]✓2e[S3]✓3e[S4]✓4e[S5]✓5e[S6]✓6M

• Given some end-effector frame X 2 SE(3), the IK problem is to find solutions

✓ 2 <6 satisfying T (✓) = X

• As a typical example, we derive analytic inverse kinematic solutions for the PUMA and Stanford
arms.
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1.1 6R PUMA-Type Arm
When the arm is placed in its zero position:

1. the two shoulder joint axes intersect orthogonally at a common point, with joint axis 1 aligned
in the z0-direction and joint axis 2 aligned in the y0-direction

2. joint axis 3 (the elbow joint) lies in the x0-y0-plane and is aligned parallel with joint axis 2

3. joint axes 4, 5, and 6 (the wrist joints) intersect orthogonally at a common point (the wrist center)
to form an orthogonal wrist and, for the purposes of this example, we assume that these joint axes
are aligned in the z0-, y0-, and x0-directions, respectively.

4. The lengths of links 2 and 3 are a2 and a3, respectively.

5. The arm may also have an offset at the shoulder (right figure)

6. The inverse kinematics problem for PUMA-type arms can be decoupled into inverse-position and
inverse-orientation subproblems
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Zero-offset d1 = 0

Consider the simple case of a zero-offset PUMA-type arm. Express all vectors in terms of fixed-frame
coordinates, and denote the components of the wrist center p 2 <3 by p = (px, py, pz).

• Projecting p onto the x0 � y0-plane, it can be seen that

✓1 = atan2(py, px)

In addition, we can get both ✓2 and ✓3 from (r, pz) using the previous two-link manipulator kine-
matics.

• Second solution for ✓1

✓1 = atan2(py, px) + ⇡

when the original solution for ✓2 is replaced by ⇡ � ✓2.

• As long as px, py 6= 0, both these solutions are valid.

• When px = py = 0, the arm is in a singular configuration, and there are infinitely many possible
solutions for ✓1. (right figure)
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If there is an offset d1 6= 0

• There will be two solutions for ✓1, the lefty and righty solutions

✓1 = �� ↵ ✓1 = ⇡ + �+ ↵

where � = atan2(py, px) and ↵ = atan2
⇣
d1,
p

r2 � d21

⌘
with r2 = p2x + p2y

• Determining angles ✓2 and ✓3 for the PUMA-type arm now reduces to the IK for a planar two-link
chain:

cos ✓3 =
r2 � d21 + p2z � a22 � a23

2a2a3
= D ! ✓3 = atan2

⇣
±
p
1�D2, D

⌘

Two solutions for ✓3 correspond to elbow-up and elbow-down configurations for two-link arm.

• ✓2 can be obtained in a similar fashion as

✓2 = atan2

✓
pz,
q

r2 � d21

◆
� atan2 (a3s3, a2 + a3c3)
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• PUMA-type arm with an offset will have four solutions to the inverse position problem.

• The postures in the upper panel are lefty solutions (elbow-up and elbow-down), while those in
the lower panel are righty solutions (elbow-up and elbow-down).

• Let us solve the inverse orientation problem of finding (✓4, ✓5, ✓6) given the end-effector orientation.
This problem is completely straightforward:

unknown e[S4]✓4e[S5]✓5e[S6]✓6 = e�[S1]✓1e�[S2]✓2e�[S3]✓3XM�1 known

• Since S4 = (0, 0, 1, 0, 0, 0), S5 = (0, 1, 0, 0, 0, 0), and S6 = (1, 0, 0, 0, 0, 0), the wrist joint angles (✓4, ✓5, ✓6)
can be determined as the solution to

Rot(ẑ, ✓4)Rot(ŷ, ✓5)Rot(x̂, ✓6) = R from e�[S1]✓1e�[S2]✓2e�[S3]✓3XM�1

which correspond exactly to the ZYX Euler angles, derived in Appendix B.
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1.2 Stanford-Type Arms

• If the elbow joint in a 6R PUMA-type arm is replaced by a prismatic joint, we then have an
RRPRRR Stanford-type arm.

• The first joint variable ✓1 can be found in similar fashion to the PUMA-type arm: ✓1 = atan2(py, px)
(provided that px and py are not both zero).

• The variable ✓2 is then found to be ✓2 = atan2(s, r) with s = pz � d1 and r2 = p2x + p2y.

• Similarly to the case of the PUMA-type arm, a second solution for ✓1 and ✓2 is given by ✓1 =
⇡ + atan2(py, px) and ✓2 = ⇡ � atan2(s, r)

• The translation distance ✓3 is found from the relation

(✓3 + a2)
2 = r2 + s2 ! ✓3 =

q
p2x + p2y � (pz � d1)2 � a2
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