제 6 장

Inverse Kinematics (IK)

(a) A workspace, and lefty and righty

configurations.
(b) Geometric solution.

Figure 6.1: Inverse kinematics of a 2 R planar open chain

- For a general n DoF open chain with FK $T(\theta) \in S E(3), \theta \in \Re^{n}$, the IK problem can be stated as:
given a homogeneous transform $X \in S E(3)$, find solutions θ that satisfy $T(\theta)=X$.
For example, the number of IK solutions will be zero, one, and two. When there are two solutions, they are called lefty and righty solutions, or elbow-up and elbow-down solutions.

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
L_{1} c_{1}+L_{2} c_{12} \\
L_{1} s_{1}+L_{2} s_{12}
\end{array}\right]
$$

(a) A workspace, and lefty and righty

configurations
(b) Geometric solution

Figure 6.1: Inverse kinematics of a 2R planar open chain.

- Using the law of cosines, we have

$$
\begin{aligned}
L_{1}^{2}+L_{2}^{2}-2 L_{1} L_{2} \cos \beta=x^{2}+y^{2} & \rightarrow \quad \beta=\cos ^{-1}\left(\frac{L_{1}^{2}+L_{2}^{2}-x^{2}-y^{2}}{2 L_{1} L_{2}}\right) \\
L_{1}^{2}+x^{2}+y^{2}-2 L_{1} \sqrt{x^{2}+y^{2}} \cos \alpha & =L_{2}^{2} \quad \rightarrow \quad \alpha=\cos ^{-1}\left(\frac{L_{1}^{2}+x^{2}+y^{2}-L_{2}^{2}}{2 L_{1} \sqrt{x^{2}+y^{2}}}\right)
\end{aligned}
$$

- Using $\gamma=\operatorname{atan} 2(y, x)=\tan ^{-1} \frac{y}{x}$ in the range $(-\pi, \pi]$, the righty solution becomes

$$
\theta_{1}=\gamma-\alpha \quad \theta_{2}=\pi-\beta
$$

- The lefty solution is

$$
\theta_{1}=\gamma+\alpha \quad \theta_{2}=-\pi+\beta
$$

- If $x^{2}+y^{2}$ lies outside the range $\left[L_{1}-L_{2}, L_{1}+L_{2}\right]$, then no solution exists.

1 Analytic Inverse Kinematics

- Let us consider the FK of a spatial six-dof open chain in the following PoE form:

$$
T(\theta)=e^{\left[\mathcal{S}_{1}\right] \theta_{1}} e^{\left[\mathcal{S}_{2}\right] \theta_{2}} e^{\left[\mathcal{S}_{3}\right] \theta_{3}} e^{\left[\mathcal{S}_{4}\right] \theta_{4}} e^{\left[\mathcal{S}_{5}\right] \theta_{5}} e^{\left[\mathcal{S}_{6}\right] \theta_{6}} M
$$

- Given some end-effector frame $X \in S E(3)$, the IK problem is to find solutions

$$
\theta \in \Re^{6} \quad \text { satisfying } \quad T(\theta)=X
$$

- As a typical example, we derive analytic inverse kinematic solutions for the PUMA and Stanford arms.

Figure 6.2: Inverse position kinematics of a 6R PUMA-type arm.

Figure 6.3: A 6R PUMA-type arm with a shoulder offset.

1.1 6R PUMA-Type Arm

When the arm is placed in its zero position:

1. the two shoulder joint axes intersect orthogonally at a common point, with joint axis 1 aligned in the z_{0}-direction and joint axis 2 aligned in the y_{0}-direction

2 . joint axis 3 (the elbow joint) lies in the $x_{0}-y_{0}$-plane and is aligned parallel with joint axis 2
3. joint axes 4,5 , and 6 (the wrist joints) intersect orthogonally at a common point (the wrist center) to form an orthogonal wrist and, for the purposes of this example, we assume that these joint axes are aligned in the $z_{0}-, y_{0^{-}}$, and x_{0}-directions, respectively.
4. The lengths of links 2 and 3 are a_{2} and a_{3}, respectively.
5. The arm may also have an offset at the shoulder (right figure)
6. The inverse kinematics problem for PUMA-type arms can be decoupled into inverse-position and inverse-orientation subproblems

Figure 6.2: Inverse position kinematics of a 6R PUMA-type arm.

Figure 6.4: Singular configuration of the zero-offset 6R PUMA-type arm.

Zero-offset $d_{1}=0$

Consider the simple case of a zero-offset PUMA-type arm. Express all vectors in terms of fixed-frame coordinates, and denote the components of the wrist center $p \in \Re^{3}$ by $p=\left(p_{x}, p_{y}, p_{z}\right)$.

- Projecting p onto the $x_{0}-y_{0}$-plane, it can be seen that

$$
\theta_{1}=\operatorname{atan} 2\left(p_{y}, p_{x}\right)
$$

In addition, we can get both θ_{2} and θ_{3} from $\left(r, p_{z}\right)$ using the previous two-link manipulator kinematics.

- Second solution for θ_{1}

$$
\theta_{1}=\operatorname{atan} 2\left(p_{y}, p_{x}\right)+\pi
$$

when the original solution for θ_{2} is replaced by $\pi-\theta_{2}$.

- As long as $p_{x}, p_{y} \neq 0$, both these solutions are valid.
- When $p_{x}=p_{y}=0$, the arm is in a singular configuration, and there are infinitely many possible solutions for θ_{1}. (right figure)

(b) Kinematic diagram.

Figure 6.3: A 6R PUMA-type arm with a shoulder offset

If there is an offset $d_{1} \neq 0$

- There will be two solutions for θ_{1}, the lefty and righty solutions

$$
\theta_{1}=\phi-\alpha \quad \theta_{1}=\pi+\phi+\alpha
$$

where $\phi=\operatorname{atan} 2\left(p_{y}, p_{x}\right)$ and $\alpha=\operatorname{atan} 2\left(d_{1}, \sqrt{r^{2}-d_{1}^{2}}\right)$ with $r^{2}=p_{x}^{2}+p_{y}^{2}$

- Determining angles θ_{2} and θ_{3} for the PUMA-type arm now reduces to the IK for a planar two-link chain:

$$
\cos \theta_{3}=\frac{r^{2}-d_{1}^{2}+p_{z}^{2}-a_{2}^{2}-a_{3}^{2}}{2 a_{2} a_{3}}=D \quad \rightarrow \quad \theta_{3}=\operatorname{atan} 2\left(\pm \sqrt{1-D^{2}}, D\right)
$$

Two solutions for θ_{3} correspond to elbow-up and elbow-down configurations for two-link arm.

- θ_{2} can be obtained in a similar fashion as

$$
\theta_{2}=\operatorname{atan} 2\left(p_{z}, \sqrt{r^{2}-d_{1}^{2}}\right)-\operatorname{atan} 2\left(a_{3} s_{3}, a_{2}+a_{3} c_{3}\right)
$$

Figure 6.5: Four possible inverse kinematics solutions for the 6R PUMA-type arm with shoulder offset.

- PUMA-type arm with an offset will have four solutions to the inverse position problem.
- The postures in the upper panel are lefty solutions (elbow-up and elbow-down), while those in the lower panel are righty solutions (elbow-up and elbow-down).
- Let us solve the inverse orientation problem of finding ($\theta_{4}, \theta_{5}, \theta_{6}$) given the end-effector orientation. This problem is completely straightforward:

$$
\text { unknown } \quad e^{\left[\mathcal{S}_{4}\right] \theta_{4}} e^{\left[\mathcal{S}_{5}\right] \theta_{5}} e^{\left[\mathcal{S}_{6}\right] \theta_{6}}=e^{-\left[\mathcal{S}_{1}\right] \theta_{1}} e^{-\left[\mathcal{S}_{2}\right] \theta_{2}} e^{-\left[\mathcal{S}_{3}\right] \theta_{3}} X M^{-1} \quad \text { known }
$$

- Since $\mathcal{S}_{4}=(0,0,1,0,0,0), \mathcal{S}_{5}=(0,1,0,0,0,0)$, and $\mathcal{S}_{6}=(1,0,0,0,0,0)$, the wrist joint angles $\left(\theta_{4}, \theta_{5}, \theta_{6}\right)$ can be determined as the solution to

$$
\operatorname{Rot}\left(\hat{z}, \theta_{4}\right) \operatorname{Rot}\left(\hat{y}, \theta_{5}\right) \operatorname{Rot}\left(\hat{x}, \theta_{6}\right)=R \quad \text { from } \quad e^{-\left[\mathcal{S}_{1}\right] \theta_{1}} e^{-\left[\mathcal{S}_{2}\right] \theta_{2}} e^{-\left[\mathcal{S}_{3}\right] \theta_{3}} X M^{-1}
$$

which correspond exactly to the ZYX Euler angles, derived in Appendix B.

1.2 Stanford-Type Arms

Figure 6.6: The first three joints of a Stanford-type arm.

- If the elbow joint in a 6R PUMA-type arm is replaced by a prismatic joint, we then have an RRPRRR Stanford-type arm.
- The first joint variable θ_{1} can be found in similar fashion to the PUMA-type arm: $\theta_{1}=\operatorname{atan} 2\left(p_{y}, p_{x}\right)$ (provided that p_{x} and p_{y} are not both zero).
- The variable θ_{2} is then found to be $\theta_{2}=\operatorname{atan} 2(s, r)$ with $s=p_{z}-d_{1}$ and $r^{2}=p_{x}^{2}+p_{y}^{2}$.
- Similarly to the case of the PUMA-type arm, a second solution for θ_{1} and θ_{2} is given by $\theta_{1}=$ $\pi+\operatorname{atan} 2\left(p_{y}, p_{x}\right)$ and $\theta_{2}=\pi-\operatorname{atan} 2(s, r)$
- The translation distance θ_{3} is found from the relation

$$
\left(\theta_{3}+a_{2}\right)^{2}=r^{2}+s^{2} \quad \rightarrow \quad \theta_{3}=\sqrt{p_{x}^{2}+p_{y}^{2}-\left(p_{z}-d_{1}\right)^{2}}-a_{2}
$$

