
1 Manipulator Jacobian
• In the most general case, vtip can be taken to be a six-dimensional twist V, while, for pure ori-

enting devices such as a wrist, vtip is usually taken to be the angular velocity of the end-effector
frame.

V = J(✓)✓̇ ! V = J1(✓)✓̇1 + J2(✓)✓̇2 + · · ·+ Jn(✓)✓̇n

For given the configuration ✓ of the robot, the 6-vector Ji(✓), which is column i of J(✓), is the twist
V when ✓̇i = 1 and all other joint velocities are zero.

• The only difference is that the screw axes of the Jacobian depend on the joint variables ✓ whereas
the screw axes for the forward kinematics of Chapter 4 were always for the case ✓ = 0.

Ji(✓) = screw axis for arbirary ✓

• The two standard types of Jacobian that we will consider are

– space Jacobian Js(✓) satisfying

Vs = Js(✓)✓̇ = Js1✓̇1 + Js2✓̇2 + · · ·+ Jsn✓̇n

where each column Jsi(✓) corresponds to a screw axis expressed in the fixed space frame {s}
– body Jacobian Jb(✓) satisfying

Vb = Jb(✓)✓̇ = Jb1✓̇1 + Jb2✓̇2 + · · ·+ Jbn✓̇n

where each column Jbi(✓) corresponds to a screw axis expressed in the end-effector frame {b}.
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1.1 Space Jacobian
Consider an n-link open chain whose forward kinematics is expressed in the following PoE form:

T (✓1, · · · , ✓n) = e[S1]✓1e[S2]✓2 · · · e[Sn]✓nM

Using the following properties

Ṫ =
de[S1]✓1

dt
e[S2]✓2 · · · e[Sn]✓nM + e[S1]✓1 de

[S2]✓2

dt
· · · e[Sn]✓nM + · · ·+ e[S1]✓1e[S2]✓2 · · · de

[Sn]✓n

dt
M

= [S1]✓̇1e
[S1]✓1e[S2]✓2 · · · e[Sn]✓nM + e[S1]✓1[S2]✓̇2e

[S2]✓2 · · · e[Sn]✓nM + · · ·+ e[S1]✓1e[S2]✓2 · · · [Sn]✓̇ne
[Sn]✓nM

T�1 = M�1e�[Sn]✓ne�[Sn�1]✓n�1 · · · e�[S1]✓1

the spatial twist Vs 2 <6 and its matrix form [Vs] = Ṫ T�1 2 se(3) are obtained as:

[Vs] = Ṫ T�1

= [S1]✓̇1 + e[S1]✓1[S2]e
�[S1]✓1 ✓̇2 + e[S1]✓1e[S2]✓2[S3]e

�[S2]✓2e�[S1]✓1 ✓̇3 + · · ·

and

Vs = S1✓̇1 + Ade[S1]✓1(S2)✓̇2 + Ade[S1]✓1e[S2]✓2(S3)✓̇3 + · · ·

= Js1✓̇1 + Js2(✓1)✓̇2 + Js3(✓1, ✓2)✓̇3 + · · · = Js(✓)✓̇

where it is noted that ith column of Jacobian corresponds to the adjoint mapping of ith screw axis

Jsi(✓) = Ade[S1]✓1 ···e[Si�1]✓i�1(Si)
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Definition 5.1. Let the FK of an n-link open chain be expressed in the following PoE form:

T (✓1, · · · , ✓n) = e[S1]✓1e[S2]✓2 · · · e[Sn]✓nM 2 SE(3)

The space Jacobian Js(✓) 2 <n⇥6 relates the joint rate vector ✓̇ 2 <n to the spatial twist Vs via

Vs = Js(✓)✓̇

The ith column of Js(✓) is

Jsi(✓) = Ade[S1]✓1 ···e[Si�1]✓i�1(Si)

for i = 2, · · · , n, with the first column Js1 = S1.

• To understand the physical meaning behind the columns of Js(✓),

– observe that the ith column is of the form AdTi�1(Si), where Ti�1 = e[S1]✓1 · · · e[Si�1]✓i�1

– recall that Si is the screw axis describing the ith joint axis in terms of the fixed frame with
the robot in its zero position.

• AdTi�1(Si) is therefore the screw axis describing the ith joint axis after it undergoes the rigid body
displacement Ti�1 = e[S1]✓1 · · · e[Si�1]✓i�1.

• The procedure for determining the columns Jsi of Js(✓) is similar to the procedure for deriving
the joint screws Si in the PoE formula e[S1]✓1 · · · e[Sn]✓nM : each column Jsi(✓) is the screw vector
describing joint axis i, expressed in fixed-frame coordinates, but for arbitrary ✓ rather than ✓ = 0.
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Example 5.1. Space Jacobian Js(✓) for a spatial RRRP chain with Jsi = [!si, vsi] ?

• !s1 = [0, 0, 1], q1 = [0, 0, 0], and vs1 = [0, 0, 0]

• !s2 = [0, 0, 1], q2 = [L1c1, L1s1, 0], and vs2 = !s2 ⇥ (�q2) = [L1s1,�L1c1, 0]

• !s3 = [0, 0, 1], q3 = [L1c1 + L2c12, L1s1 + L2s12, 0], and vs3 = !s3 ⇥ (�q3) = [L1s1 + L2s12,�L1c1 � L2c12, 0]

• !s4 = [0, 0, 0], and vs4 = [0, 0, 1]

Js(✓) =

2

66666666664

0 0 0 0

0 0 0 0

1 1 1 0

0 L1s1 L1s1 + L2s12 0

0 �L1c1 �L1c1 � L2c12 0

0 0 0 1

3

77777777775

where c1 = cos ✓1, s1 = sin ✓1, c12 = cos(✓1 + ✓2) and s12 = sin(✓1 + ✓2)
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Example 5.2. Space Jacobian for a spatial RRPRRR chain?

• !s1 = [0, 0, 1]T , q1 = [0, 0, L1]T , and vs1 = !s1 ⇥ (�q1) = [0, 0, 0]T

• !s2 = Rot(ẑ, ✓1)[�1, 0, 0]T = [�c1,�s1, 0]T , q2 = [0, 0, L1]T , and vs2 = !s2 ⇥ (�q2) = [L1s1,�L1c1, 0]T

• !s3 = [0, 0, 0]T , and vs3 = Rot(ẑ, ✓1)Rot(x̂,�✓2)[0, 1, 0]T = [�s1c2, c1c2,�s2]T

• The wrist center is located at the point

qw =

2

664

0

0

L1

3

775+Rot(ẑ, ✓1)Rot(x̂,�✓2)

2

664

0

L2 + ✓3

0

3

775 =

2

664

�(L2 + ✓3)s1c2

(L2 + ✓3)c1c2

L1 � (L2 + ✓3)s2

3

775

• !s4 = Rot(ẑ, ✓1)Rot(x̂,�✓2)[0, 0, 1]T = [�s1s2, c1s2, c2]T and vs4 = !s4 ⇥ (�qw)

• !s5 = Rot(ẑ, ✓1)Rot(x̂,�✓2)Rot(ẑ, ✓4)[�1, 0, 0]T and vs5 = !s5 ⇥ (�qw)

• !s6 = Rot(ẑ, ✓1)Rot(x̂,�✓2)Rot(ẑ, ✓4)Rot(x̂,�✓5)[0, 1, 0]T and vs6 = !s6 ⇥ (�qw)
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1.2 Body Jacobian
Consider a body form for the FK of n-link open chain

T (✓1, · · · , ✓n) = Me[B1]✓1e[B2]✓2 · · · e[Bn]✓n

Using the following properties

Ṫ = M
de[B1]✓1

dt
e[B2]✓2 · · · e[Bn]✓n + · · ·+Me[B1]✓1e[B2]✓2 · · · de

[Bn]✓n

dt

= Me[B1]✓1[B1]✓̇1e
[B2]✓2 · · · e[Bn]✓n + · · ·+Me[B1]✓1e[B2]✓2 · · · e[Bn]✓n[Bn]✓̇n

T�1 = e�[Bn]✓ne�[Bn�1]✓n�1 · · · e�[B1]✓1M�1

the body twist Vb 2 <6 and its matrix form [Vb] = T�1Ṫ 2 se(3) are obtained as:

[Vb] = T�1Ṫ

= e�[Bn]✓n · · · e�[B2]✓2[B1]e
[B2]✓2 · · · e[Bn]✓n ✓̇1 + · · ·+ e�[Bn]✓n[Bn�1]e

[Bn]✓n ✓̇n�1 + [Bn]✓̇n

and

Vb = Ade�[Bn]✓n ···e�[B2]✓2(B1)✓̇1 + · · ·+ Ade�[Bn]✓n(Bn�1)✓̇n�1 + Bn✓̇n

= Jb1(✓2, · · · , ✓n)✓̇1 + · · ·+ Jb,n�1(✓n)✓̇n�1 + Jbn✓̇n = Jb(✓)✓̇

where it is noted that ith column of Jacobian corresponds to the adjoint mapping of ith screw axis

Jbi(✓) = Ade�[Bn]✓n ···e�[Bi+1]✓i+1(Bi)
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Definition 5.2. Let the FK of an n-link open chain be expressed in the following PoE form:

T (✓1, · · · , ✓n) = Me[B1]✓1e[B2]✓2 · · · e[Bn]✓n 2 SE(3)

The body Jacobian Jb(✓) 2 <n⇥6 relates the joint rate vector ✓̇ 2 <n to the body twist Vb via

Vb = Jb(✓)✓̇

The ith column of Jb(✓) is

Jbi(✓) = Ade�[Bn]✓n ···e�[Bi+1]✓i+1(Bi)

for i = 1, · · · , n� 1, with the last column Jbn = Bn.

• Each column Jbi(✓) = (!bi(✓), vbi(✓)) of Jb(✓) is the screw vector for joint axis i, expressed in the
coordinates of the end-effector frame rather than those of the fixed frame.

• The procedure for determining the columns of Jb(✓) is similar to the procedure for deriving the
forward kinematics in the PoE form Me[B1]✓1e[B2]✓2 · · · e[Bn]✓n

• Each of the end-effector-frame joint screws Jbi(✓) is expressed for arbitrary ✓ rather than ✓ = 0.
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1.3 Visualizing the Space and Body Jacobian

• Let us start with the third column, Js3, of the space Jacobian. The joint variables ✓3, ✓4, and ✓5
have no impact on the spatial twist resulting from the joint velocity ✓̇3 b/c they do not displace
axis 3 relative to {s}

Tss00 = e[S1]✓1e[S2]✓2

• Js3 represents the screw relative to {s} for arbitrary joint angles ✓1 and ✓2 while S3 represents
the screw relative to {s} at its zero position

Js3 = AdTss00(S3)
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• Consider the third column, Jb3, of the body Jacobian. The joint variables ✓1, ✓2, and ✓3 have no
impact on the spatial twist resulting from the joint velocity ✓̇3 b/c they do not displace axis 3
relative to {b}

Tbb00 = e[B4]✓4e[B5]✓5

• Along with similar result, we have

Jb3 = AdTb00b(B3)

= AdT�1
bb00
(B3)

= Ade�[B5]✓5e�[B4]✓4(B3)
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1.4 Relationship between the Space and Body Jacobian
• Consider the FK as Tsb(✓). The twist of the end-effector frame can be written in terms of the fixed-

and end-effector-frame coordinates as

[Vs] = ṪsbT
�1
sb [Vb] = T�1

sb Ṫsb

with the relation of Vs = AdTsb(Vb) and Vb = AdTbs(Vs).

• The twists are also related to their respective Jacobians via

Vs = Js(✓)✓̇ Vb = Jb(✓)✓̇

• By the following property

Vb = Jb(✓)✓̇

= AdTbs(Vs) = AdTbs(Js(✓)✓̇)

= AdTbs(Js(✓))✓̇

we have

Jb(✓) = AdTbs(Js(✓)) Js(✓) = AdTsb(Jb(✓))

• The fact that the space and body Jacobians, and the space and body twists, are similarly related
by the adjoint map should not be surprising since each column of the space or body Jacobian
corresponds to a twist.

• Jb(✓) and Js(✓) always have the same rank.
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1.5 Alternative Notions of the Jacobian
• When using a minimum set of coordinates, the end-effector velocity is not given by a twist V but

by the time derivative of the coordinates q̇, and the Jacobian Ja in the velocity kinematics

q̇ = Ja(✓)✓̇

is sometimes called the analytic Jacobian as opposed to the geometric Jacobian in space and body
form.

• For an SE(3) task space, a typical choice of the minimal coordinates q 2 <6 includes three coor-
dinates for the origin of the end-effector frame in the fixed frame and three coordinates for the
orientation of the end-effector frame in the fixed frame.

• Example coordinates for the orientation include the Euler angles (see Appendix B) and exponen-
tial coordinates for rotation.
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Example 5.3. Find the analytic Jacobian Ja with exponential coordinates r = !̂✓ (k!̂k = 1 and ✓ 2 [0, ⇡])
for rotation from the body Jacobian Jb?

• Consider an open chain with n joints and the body Jacobian. The angular and linear velocity
components of Vb = (!b, vb) can be written explicitly as

Vb =

"
!b

vb

#
= Jb(✓)✓̇ =

"
J!(✓)

Jv(✓)

#
✓̇

• Suppose that our minimal set of coordinates q 2 <6 is given by q = (r, x), where x 2 <3 is the
position of the origin of the end-effector frame and r = !̂✓ 2 <3 is the exponential coordinate
representation for the rotation.

• The coordinate time derivative ẋ is related to vb by a rotation that gives vb in the fixed coordinates:

ẋ = Rsb(✓)vb = Rsb(✓)Jv(✓)✓̇

where Rsb(✓) = e[r] = e[!̂]✓.

• The time-derivative ṙ is related to the body angular velocity !b by

!b = A(r)ṙ ! ṙ = A�1(r)!b = A�1(r)J!(✓)✓̇

provided that the matrix A(r) is invertible, ṙ can be obtained from !b where

A(r) = I � 1� cos krk
krk2 [r] +

krk � sin krk
krk3 [r]2
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• Putting these together, we have

q̇ =

"
ṙ

ẋ

#
=

"
A�1(r) 0

0 Rsb(✓)

#"
J!(✓)

Jv(✓)

#
✓̇

• Analytic Jacobian is related to the body Jacobian

Ja(✓) =

"
A�1(r) 0

0 Rsb(✓)

#
Jb(✓)
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1.6 Looking Ahead to Inverse Velocity Kinematics
• The velocity FK can be written independently of the frame in which the twists are represented

V = J(✓)✓̇

• For given a desired twist V, the velocity IK (inverse kinematics) is given by

– if J(✓) is square (n = 6) and of full rank, then

✓̇ = J�1(✓)V

– if n < 6, then arbitrary twists V cannot be achieved - the robot does not have enough joints.
– if n > 6, then we call the robot redundant.

✓̇ = J+(✓)V + (I � J+J)⌘

where J+ = JT (JJT )�1 so that JJ+ = I, and ⌘ is an arbitrary number to determine the rate
of internal motion.

– A desired twist V places six constraints on the joint rates, and the remaining n� 6 freedoms
correspond to internal motions of the robot that are not evident in the motion of the end-
effector.
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