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Velocity Kinematics and Statics

e This chapter deals with problem of calculating the twist of the end-effector of an open chain from
a given set of joint positions and velocities.

e Consider the FK (forward kinematics) with a minimal set of coordinates = € R and a set of joint
variables 0 € R"

010)90 _ 05(0),

PO = = et

— J(6)6

where J(0) € R"*" is called the Jacobian.

e The Jacobian matrix represents the linear sensitivity of the end-effector velocity i to the joint
velocity 0, and it is a function of the joint variables 6.
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Figure 5.1: (Left) A 2R robot arm. (Right) Columns 1 and 2 of the Jacobian
correspond to the endpoint velocity when 61 =1 (and 62 = 0) and when 6> =1 (and
61 = 0), respectively.

e Consider the FK of 2R planar open chain

xr1 = Licosb; + Lo 008(91 -+ 92) ro = Lisinf; + Lo sin(91 + 92)
I = —L1 sin 9191 — L2 SiH(Hl + 82)(91 + (92) i’g = L1 sin 9191 + L2 COS(@l + 02)(81 + 92)

]

e As long as Ji(0) and J»(¢) are not collinear, it is possible to generate a tip velocity vy, in any
arbitrary direction in the z1-z, plane by choosing appropriate joint velocities #; and 6s.

e Velocity kinematics using the Jacobian and its two column vectors

jjl o —L1 sin 91 — L2 sin(ﬁl + 92) —L2 Sin(91 + (92)
Licosfy + Lycos(0y + 05) Lo cos(0y + 09)

T

Utip = J1(9)81 + J2(9)02

o If 0, is 0° or 180°, J1(0) and J,(#) are collinear regardless of ¢; (singularity). If 6, = 0,

Ji(0) =

—L;sinf; — Ly Sin(91)] . Jo(0) =
= 2 -

Ly cos 0y + Ly cos(6y)

—(Ll + LQ) sin 04
(L1 + Lo) cos 0y

—Lg sin(@l) L2
R
Lo cos(6y) 1+ Lo
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Figure 5.2: Mapping the set of possible joint velocities, represented as a square in the
Figure 5.1: (Left) A 2R robot arm. (Right) Columns 1 and 2 of the Jacobian ¢, g, space, through the Jacobian to find the parallelogram of possible end-effector
correspond to the endpoint velocity when 61 =1 (and 02 = 0) and when 62 =1 (and  velocities. The extreme points A, B, C, and D in the joint velocity space map to the
61 = 0), respectively. extreme points A, B, C, and D in the end-effector velocity space.

s

e With L, = L, = 1, consider the robot at nonsingular configuration ¢, = 0 and 0, =

—0.71 —0.71 i —0.71 —0.71| |6,
1.71  0.71 i .71 0.71 | |6,

S

ISE

e The Jacobian can be used to map bounds on the rotational speed of the joints to bounds on vy;,. For
example, if the maximal speeds of motors are bounded as 0,,.,,1 = 10[rad/s| and 64,2 = 10[rad/s]

; _0.71 —0.71] [10 —14.2
Point A i = —

@] | 171 071 ] |10 24.2 |

] [-071 —0.71] [~10 0 |
Point B i = —

| | 171 071 [ 10 ~10)
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Figure 5.1: (Left) A 2R robot arm. (Right) Columns 1 and 2 of the Jacobian
correspond to the endpoint velocity when 61 =1 (and 6 = 0) and when 6=1 (and

Figure 5.3: Manipulability ellipsoids for two different postures of the 2R planar open
6; = 0), respectively. 8 p y ellip: p p D

chain.

e Rather than mapping a polygon of joint velocities through the Jacobian, we could instead map a
unit circle (62 + 62 = 1, namely, #; = cosa and 6, = sina with o € [0,27)) of joint velocities in the

0, — B plane.
o] [-0.71 —0.71] [cosa] [ —0.71(cosa +sina)
29| | 171 0.71 | [sina cosa + 0.71(cos a + sin «)
@] [-071 i ~1

if o =0 - if o = 45° )
R i 1.71

if @ =90°

e This circle maps through the Jacobian to an ellipse in the space of tip velocities, and this ellipse

is referred to as the manipulability ellipsoid.

e As the manipulator configuration approaches a singularity, the ellipse collapses to a line segment,

since the ability of the tip to move in one direction is lost.

e The closer the ellipsoid is to a circle, i.e., the closer the ratlo ez jg to 1, the more easily can the

mzn

tip move in arbitrary directions and thus the more removed it is from a singularity.
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The Jacobian also plays a central role in static analysis.

e Suppose that an external force is applied to the robot tip. What are the joint torques required to
resist this external force?

e The conservation of power, assuming that negligible power is used to move the robot
fovp=10 =  fLI@0=7"0 = =70 fu

where the joint torque 7 needed to create the tip force f;;, is calculated from the equation above.

e If the inverse of J7(0) exists,

frip=J1(O)T
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Figure 5.1: (Left) A 2R robot arm. (Right) Columns 1 and 2 of the Jacobian
correspond to the endpoint velocity when 61 =1 (and 62 = 0) and when 6> =1 (and
61 = 0), respectively. Figure 5.4: Mapping joint torque bounds to tip force bounds.

e From the previous example,

0 —-0.71 —0.71 —0.71 1.71 1 —2.41
J = — 7=JO) fup — o h — h_ Tl
% 1.71 0.71 T2 —0.71 0.71 f2 f2 1 —1 T2
e The inverse of Jacobian transpose can be used to map bounds on motor torques 7 to bounds on fi;,,.
For example, if the maximal torques of motors are bounded as 7,,,,1 = 10[Nm| and 7,4, 2 = 10[Nm]

1 —2.41] [10 —14.1
Point A h = —
£, 1 -1 |10 0

1 1 —241] [-10 _34.1
Point B h_ ]:[ 20]

] 1 —1 || 10
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Figure 5.1: (Left) A 2R robot arm.
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(Right) Columns 1 and 2 of the Jacobian

correspond to the endpoint velocity when 61 =1 (and 62 = 0) and when 6> = 1 (and

61 = 0), respectively.
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Figure 5.5: Force ellipsoids for two different postures of the 2R planar open chain.

e As for the manipulability ellipsoid, a force ellipsoid can be drawn by mapping a unit circle contour
in the 7 — 7 plane to an ellipsoid in the f; — f> tip-force plane via the Jacobian transpose inverse

T (6).

e Let us obtain unit circle contour (77 + 73 = 1, namely, 7, = cosa and 7, = sina with « € [0,27)) of
joint torques in the f; — f, plane.

ifa=0

i)
f2 1

—1 Sin «

fi |1 —2.41] [cosoz
| f2) 1

|

|

if o = 45° [ﬁ] —

cosa — 2.41 sin oz_

COS (v — SIn v

.

f2

S

if o = 90° [
f2

—2.41
—1

e The force ellipsoid illustrates how easily the robot can generate forces in different directions.
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Figure 5.6: Left-hand column: Manipulability ellipsoids at two different arm configu-
rations. Right-hand column: The force ellipsoids for the same two arm configurations.

e As is evident from the manipulability and force ellipsoids, if it is easy to generate a tip velocity
in a given direction then it is difficult to generate a force in that same direction, and vice versa.

e For a given robot configuration, the principal axes of the manipulability ellipsoid and force ellip-
soid are aligned, and the lengths of the principal semi-axes of the force ellipsoid are the recipro-
cals of the lengths of the principal semi-axes of the manipulability ellipsoid.

e At a singularity, the manipulability ellipsoid collapses to a line segment. The force ellipsoid, on
the other hand, becomes infinitely long in a direction orthogonal to the manipulability ellipsoid
line segment (i.e., the direction of the aligned links) and skinny in the orthogonal direction.

e Consider carrying a heavy suitcase with your arm. It is much easier if your arm hangs straight
down under gravity (with your elbow fully straightened at a singularity), because the force you
must support passes directly through your joints, therefore requiring no torques about the joints.
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