
⌧5•

Velocity Kinematics and Statics
• This chapter deals with problem of calculating the twist of the end-effector of an open chain from

a given set of joint positions and velocities.

• Consider the FK (forward kinematics) with a minimal set of coordinates x 2 <m and a set of joint
variables ✓ 2 <n

x = f(✓) ! ẋ =
@f(✓)

@✓T
@✓

@t
=

@f(✓)

@✓T
✓̇ = J(✓)✓̇

where J(✓) 2 <m⇥n is called the Jacobian.

• The Jacobian matrix represents the linear sensitivity of the end-effector velocity ẋ to the joint
velocity ✓̇, and it is a function of the joint variables ✓.
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• Consider the FK of 2R planar open chain

x1 = L1 cos ✓1 + L2 cos(✓1 + ✓2) x2 = L1 sin ✓1 + L2 sin(✓1 + ✓2)

ẋ1 = �L1 sin ✓1✓̇1 � L2 sin(✓1 + ✓2)(✓̇1 + ✓̇2) ẋ2 = L1 sin ✓1✓̇1 + L2 cos(✓1 + ✓2)(✓̇1 + ✓̇2)

• Velocity kinematics using the Jacobian and its two column vectors

"
ẋ1

ẋ2

#
=

"
�L1 sin ✓1 � L2 sin(✓1 + ✓2) �L2 sin(✓1 + ✓2)

L1 cos ✓1 + L2 cos(✓1 + ✓2) L2 cos(✓1 + ✓2)

#"
✓̇1

✓̇2

#

vtip = J1(✓)✓̇1 + J2(✓)✓̇2

• As long as J1(✓) and J2(✓) are not collinear, it is possible to generate a tip velocity vtip in any
arbitrary direction in the x1-x2 plane by choosing appropriate joint velocities ✓̇1 and ✓̇2.

• If ✓2 is 0� or 180�, J1(✓) and J2(✓) are collinear regardless of ✓1 (singularity). If ✓2 = 0,

J1(✓) =

"
�L1 sin ✓1 � L2 sin(✓1)

L1 cos ✓1 + L2 cos(✓1)

#
=

"
�(L1 + L2) sin ✓1

(L1 + L2) cos ✓1

#
J2(✓) =

"
�L2 sin(✓1)

L2 cos(✓1)

#
=

L2

L1 + L2
J1(✓)
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• With L1 = L2 = 1, consider the robot at nonsingular configuration ✓1 = 0 and ✓2 =
⇡
4

J

 "
0
⇡
4

#!
=

"
�0.71 �0.71

1.71 0.71

#
!

"
ẋ1

ẋ2

#
=

"
�0.71 �0.71

1.71 0.71

#"
✓̇1

✓̇2

#

• The Jacobian can be used to map bounds on the rotational speed of the joints to bounds on vtip. For
example, if the maximal speeds of motors are bounded as ✓max,1 = 10[rad/s] and ✓max,2 = 10[rad/s]

Point A

"
ẋ1

ẋ2

#
=

"
�0.71 �0.71

1.71 0.71

#"
10

10

#
=

"
�14.2

24.2

#

Point B

"
ẋ1

ẋ2

#
=

"
�0.71 �0.71

1.71 0.71

#"
�10

10

#
=

"
0

�10

#
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• Rather than mapping a polygon of joint velocities through the Jacobian, we could instead map a
unit circle (✓̇21 + ✓̇22 = 1, namely, ✓̇1 = cos↵ and ✓̇2 = sin↵ with ↵ 2 [0, 2⇡)) of joint velocities in the
✓̇1 � ✓̇2 plane.

"
ẋ1

ẋ2

#
=

"
�0.71 �0.71

1.71 0.71

#"
cos↵

sin↵

#
=

"
�0.71(cos↵ + sin↵)

cos↵ + 0.71(cos↵ + sin↵)

#

if ↵ = 0

"
ẋ1

ẋ2

#
=

"
�0.71

1.71

#
if ↵ = 45�

"
ẋ1

ẋ2

#
=

"
�1

1.71

#
if ↵ = 90�

"
ẋ1

ẋ2

#
=

"
�0.71

0.71

#

• This circle maps through the Jacobian to an ellipse in the space of tip velocities, and this ellipse
is referred to as the manipulability ellipsoid.

• As the manipulator configuration approaches a singularity, the ellipse collapses to a line segment,
since the ability of the tip to move in one direction is lost.

• The closer the ellipsoid is to a circle, i.e., the closer the ratio lmax

lmin
is to 1, the more easily can the

tip move in arbitrary directions and thus the more removed it is from a singularity.
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The Jacobian also plays a central role in static analysis.

• Suppose that an external force is applied to the robot tip. What are the joint torques required to
resist this external force?

• The conservation of power, assuming that negligible power is used to move the robot

fT
tipvtip = ⌧T ✓̇ ! fT

tipJ(✓)✓̇ = ⌧T ✓̇ ! ⌧ = JT (✓)ftip

where the joint torque ⌧ needed to create the tip force ftip is calculated from the equation above.

• If the inverse of JT (✓) exists,

ftip = J�T (✓)⌧
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• From the previous example,

J

 "
0
⇡
4

#!
=

"
�0.71 �0.71

1.71 0.71

#
! ⌧ = JT (✓)ftip !

"
⌧1

⌧2

#
=

"
�0.71 1.71

�0.71 0.71

#"
f1

f2

#
!

"
f1

f2

#
=

"
1 �2.41

1 �1

#"
⌧1

⌧2

#

• The inverse of Jacobian transpose can be used to map bounds on motor torques ⌧ to bounds on ftip.
For example, if the maximal torques of motors are bounded as ⌧max,1 = 10[Nm] and ⌧max,2 = 10[Nm]

Point A

"
f1

f2

#
=

"
1 �2.41

1 �1

#"
10

10

#
=

"
�14.1

0

#

Point B

"
f1

f2

#
=

"
1 �2.41

1 �1

#"
�10

10

#
=

"
�34.1

�20

#
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• As for the manipulability ellipsoid, a force ellipsoid can be drawn by mapping a unit circle contour
in the ⌧1� ⌧2 plane to an ellipsoid in the f1�f2 tip-force plane via the Jacobian transpose inverse
J�T (✓).

• Let us obtain unit circle contour (⌧ 21 + ⌧ 22 = 1, namely, ⌧1 = cos↵ and ⌧2 = sin↵ with ↵ 2 [0, 2⇡)) of
joint torques in the f1 � f2 plane.

"
f1

f2

#
=

"
1 �2.41

1 �1

#"
cos↵

sin↵

#
=

"
cos↵� 2.41 sin↵

cos↵� sin↵

#

if ↵ = 0

"
f1

f2

#
=

"
1

1

#
if ↵ = 45�

"
f1

f2

#
=

"
�1

0

#
if ↵ = 90�

"
f1

f2

#
=

"
�2.41

�1

#

• The force ellipsoid illustrates how easily the robot can generate forces in different directions.
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• As is evident from the manipulability and force ellipsoids, if it is easy to generate a tip velocity
in a given direction then it is difficult to generate a force in that same direction, and vice versa.

• For a given robot configuration, the principal axes of the manipulability ellipsoid and force ellip-
soid are aligned, and the lengths of the principal semi-axes of the force ellipsoid are the recipro-
cals of the lengths of the principal semi-axes of the manipulability ellipsoid.

• At a singularity, the manipulability ellipsoid collapses to a line segment. The force ellipsoid, on
the other hand, becomes infinitely long in a direction orthogonal to the manipulability ellipsoid
line segment (i.e., the direction of the aligned links) and skinny in the orthogonal direction.

• Consider carrying a heavy suitcase with your arm. It is much easier if your arm hangs straight
down under gravity (with your elbow fully straightened at a singularity), because the force you
must support passes directly through your joints, therefore requiring no torques about the joints.
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