제 5 장

Velocity Kinematics and Statics

- This chapter deals with problem of calculating the twist of the end-effector of an open chain from a given set of joint positions and velocities.
- Consider the FK (forward kinematics) with a minimal set of coordinates $x \in \Re^{m}$ and a set of joint variables $\theta \in \Re^{n}$

$$
x=f(\theta) \quad \rightarrow \quad \dot{x}=\frac{\partial f(\theta)}{\partial \theta^{T}} \frac{\partial \theta}{\partial t}=\frac{\partial f(\theta)}{\partial \theta^{T}} \dot{\theta}=J(\theta) \dot{\theta}
$$

where $J(\theta) \in \Re^{m \times n}$ is called the Jacobian.

- The Jacobian matrix represents the linear sensitivity of the end-effector velocity \dot{x} to the joint velocity $\dot{\theta}$, and it is a function of the joint variables θ.

Figure 5.1: (Left) A 2R robot arm. (Right) Columns 1 and 2 of the Jacobian correspond to the endpoint velocity when $\dot{\theta}_{1}=1$ (and $\dot{\theta}_{2}=0$) and when $\dot{\theta}_{2}=1$ (and $\dot{\theta}_{1}=0$), respectively.

- Consider the FK of 2R planar open chain

$$
\begin{array}{ll}
x_{1}=L_{1} \cos \theta_{1}+L_{2} \cos \left(\theta_{1}+\theta_{2}\right) & x_{2}=L_{1} \sin \theta_{1}+L_{2} \sin \left(\theta_{1}+\theta_{2}\right) \\
\dot{x}_{1}=-L_{1} \sin \theta_{1} \dot{\theta}_{1}-L_{2} \sin \left(\theta_{1}+\theta_{2}\right)\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right) & \dot{x}_{2}=L_{1} \sin \theta_{1} \dot{\theta}_{1}+L_{2} \cos \left(\theta_{1}+\theta_{2}\right)\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right)
\end{array}
$$

- Velocity kinematics using the Jacobian and its two column vectors

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right] } & =\left[\begin{array}{cc}
-L_{1} \sin \theta_{1}-L_{2} \sin \left(\theta_{1}+\theta_{2}\right) & -L_{2} \sin \left(\theta_{1}+\theta_{2}\right) \\
L_{1} \cos \theta_{1}+L_{2} \cos \left(\theta_{1}+\theta_{2}\right) & L_{2} \cos \left(\theta_{1}+\theta_{2}\right)
\end{array}\right]\left[\begin{array}{l}
\dot{\theta}_{1} \\
\dot{\theta}_{2}
\end{array}\right] \\
v_{t i p} & =J_{1}(\theta) \dot{\theta}_{1}+J_{2}(\theta) \dot{\theta}_{2}
\end{aligned}
$$

- As long as $J_{1}(\theta)$ and $J_{2}(\theta)$ are not collinear, it is possible to generate a tip velocity $v_{t i p}$ in any arbitrary direction in the $x_{1}-x_{2}$ plane by choosing appropriate joint velocities $\dot{\theta}_{1}$ and $\dot{\theta}_{2}$.
- If θ_{2} is 0° or $180^{\circ}, J_{1}(\theta)$ and $J_{2}(\theta)$ are collinear regardless of θ_{1} (singularity). If $\theta_{2}=0$,

$$
J_{1}(\theta)=\left[\begin{array}{c}
-L_{1} \sin \theta_{1}-L_{2} \sin \left(\theta_{1}\right) \\
L_{1} \cos \theta_{1}+L_{2} \cos \left(\theta_{1}\right)
\end{array}\right]=\left[\begin{array}{c}
-\left(L_{1}+L_{2}\right) \sin \theta_{1} \\
\left(L_{1}+L_{2}\right) \cos \theta_{1}
\end{array}\right] \quad J_{2}(\theta)=\left[\begin{array}{c}
-L_{2} \sin \left(\theta_{1}\right) \\
L_{2} \cos \left(\theta_{1}\right)
\end{array}\right]=\frac{L_{2}}{L_{1}+L_{2}} J_{1}(\theta)
$$

Figure 5.1: (Left) A 2R robot arm. (Right) Columns 1 and 2 of the Jacobian correspond to the endpoint velocity when $\dot{\theta}_{1}=1$ (and $\dot{\theta}_{2}=0$) and when $\dot{\theta}_{2}=1$ (and $\dot{\theta}_{1}=0$), respectively.

Figure 5.2: Mapping the set of possible joint velocities, represented as a square in the $\dot{\theta}_{1}-\dot{\theta}_{2}$ space, through the Jacobian to find the parallelogram of possible end-effector velocities. The extreme points A, B, C, and D in the joint velocity space map to the extreme points A, B, C, and D in the end-effector velocity space.

- With $L_{1}=L_{2}=1$, consider the robot at nonsingular configuration $\theta_{1}=0$ and $\theta_{2}=\frac{\pi}{4}$

$$
J\left(\left[\begin{array}{l}
0 \\
\frac{\pi}{4}
\end{array}\right]\right)=\left[\begin{array}{cc}
-0.71 & -0.71 \\
1.71 & 0.71
\end{array}\right] \quad \rightarrow \quad\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
-0.71 & -0.71 \\
1.71 & 0.71
\end{array}\right]\left[\begin{array}{l}
\dot{\theta}_{1} \\
\dot{\theta}_{2}
\end{array}\right]
$$

- The Jacobian can be used to map bounds on the rotational speed of the joints to bounds on $v_{t i p}$. For example, if the maximal speeds of motors are bounded as $\theta_{\max , 1}=10[\mathrm{rad} / \mathrm{s}]$ and $\theta_{\max , 2}=10[\mathrm{rad} / \mathrm{s}]$

Point A $\left[\begin{array}{l}\dot{x}_{1} \\ \dot{x}_{2}\end{array}\right]=\left[\begin{array}{cc}-0.71 & -0.71 \\ 1.71 & 0.71\end{array}\right]\left[\begin{array}{c}10 \\ 10\end{array}\right]=\left[\begin{array}{c}-14.2 \\ 24.2\end{array}\right]$
Point B

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
-0.71 & -0.71 \\
1.71 & 0.71
\end{array}\right]\left[\begin{array}{c}
-10 \\
10
\end{array}\right]=\left[\begin{array}{c}
0 \\
-10
\end{array}\right]
$$

Figure 5.1: (Left) A 2 R robot arm. (Right) Columns 1 and 2 of the Jacobian correspond to the endpoint velocity when $\dot{\theta}_{1}=1$ (and $\dot{\theta}_{2}=0$) and when $\dot{\theta}_{2}=1$ (and $\dot{\theta}_{1}=0$), respectively.

ellipsoids for two different postures of the $2 R$ planar open chain.

- Rather than mapping a polygon of joint velocities through the Jacobian, we could instead map a unit circle ($\dot{\theta}_{1}^{2}+\dot{\theta}_{2}^{2}=1$, namely, $\dot{\theta}_{1}=\cos \alpha$ and $\dot{\theta}_{2}=\sin \alpha$ with $\alpha \in[0,2 \pi)$) of joint velocities in the $\dot{\theta}_{1}-\dot{\theta}_{2}$ plane.

$$
\begin{aligned}
& {\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right] }=\left[\begin{array}{cc}
-0.71 & -0.71 \\
1.71 & 0.71
\end{array}\right]\left[\begin{array}{c}
\cos \alpha \\
\sin \alpha
\end{array}\right]=\left[\begin{array}{c}
-0.71(\cos \alpha+\sin \alpha) \\
\cos \alpha+0.71(\cos \alpha+\sin \alpha)
\end{array}\right] \\
& \text { if } \alpha=0 \quad\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{c}
-0.71 \\
1.71
\end{array}\right] \quad \text { if } \alpha=45^{\circ} \quad\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1.71
\end{array}\right] \quad \text { if } \alpha=90^{\circ} \quad\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{c}
-0.71 \\
0.71
\end{array}\right]
\end{aligned}
$$

- This circle maps through the Jacobian to an ellipse in the space of tip velocities, and this ellipse is referred to as the manipulability ellipsoid.
- As the manipulator configuration approaches a singularity, the ellipse collapses to a line segment, since the ability of the tip to move in one direction is lost.
- The closer the ellipsoid is to a circle, i.e., the closer the ratio $\frac{l_{\text {max }}}{l_{\text {min }}}$ is to 1 , the more easily can the tip move in arbitrary directions and thus the more removed it is from a singularity.

The Jacobian also plays a central role in static analysis.

- Suppose that an external force is applied to the robot tip. What are the joint torques required to resist this external force?
- The conservation of power, assuming that negligible power is used to move the robot

$$
f_{t i p}^{T} v_{t i p}=\tau^{T} \dot{\theta} \quad \rightarrow \quad f_{t i p}^{T} J(\theta) \dot{\theta}=\tau^{T} \dot{\theta} \quad \rightarrow \quad \tau=J^{T}(\theta) f_{t i p}
$$

where the joint torque τ needed to create the tip force $f_{\text {tip }}$ is calculated from the equation above.

- If the inverse of $J^{T}(\theta)$ exists,

$$
f_{t i p}=J^{-T}(\theta) \tau
$$

Figure 5.1: (Left) A 2R robot arm. (Right) Columns 1 and 2 of the Jacobian correspond to the endpoint velocity when $\dot{\theta}_{1}=1$ (and $\dot{\theta}_{2}=0$) and when $\dot{\theta}_{2}=1$ (and $\dot{\theta}_{1}=0$), respectively.

Figure 5.4: Mapping joint torque bounds to tip force bounds.

- From the previous example,

$$
J\left(\left[\begin{array}{l}
0 \\
\frac{\pi}{4}
\end{array}\right]\right)=\left[\begin{array}{cc}
-0.71 & -0.71 \\
1.71 & 0.71
\end{array}\right] \rightarrow \tau=J^{T}(\theta) f_{\text {tip }} \rightarrow\left[\begin{array}{c}
\tau_{1} \\
\tau_{2}
\end{array}\right]=\left[\begin{array}{ll}
-0.71 & 1.71 \\
-0.71 & 0.71
\end{array}\right]\left[\begin{array}{l}
f_{1} \\
f_{2}
\end{array}\right] \rightarrow\left[\begin{array}{l}
f_{1} \\
f_{2}
\end{array}\right]=\left[\begin{array}{cc}
1 & -2.41 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
\tau_{1} \\
\tau_{2}
\end{array}\right]
$$

- The inverse of Jacobian transpose can be used to map bounds on motor torques τ to bounds on $f_{t i p}$. For example, if the maximal torques of motors are bounded as $\tau_{\max , 1}=10[\mathrm{Nm}]$ and $\tau_{\max , 2}=10[\mathrm{Nm}]$

$$
\begin{array}{ll}
\text { Point A } & {\left[\begin{array}{l}
f_{1} \\
f_{2}
\end{array}\right]=\left[\begin{array}{lc}
1 & -2.41 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
10 \\
10
\end{array}\right]=\left[\begin{array}{c}
-14.1 \\
0
\end{array}\right]} \\
\text { Point B } & {\left[\begin{array}{l}
f_{1} \\
f_{2}
\end{array}\right]=\left[\begin{array}{cc}
1 & -2.41 \\
1 & -1
\end{array}\right]\left[\begin{array}{c}
-10 \\
10
\end{array}\right]=\left[\begin{array}{c}
-34.1 \\
-20
\end{array}\right]}
\end{array}
$$

- As for the manipulability ellipsoid, a force ellipsoid can be drawn by mapping a unit circle contour in the $\tau_{1}-\tau_{2}$ plane to an ellipsoid in the $f_{1}-f_{2}$ tip-force plane via the Jacobian transpose inverse $J^{-T}(\theta)$.
- Let us obtain unit circle contour ($\tau_{1}^{2}+\tau_{2}^{2}=1$, namely, $\tau_{1}=\cos \alpha$ and $\tau_{2}=\sin \alpha$ with $\alpha \in[0,2 \pi)$) of joint torques in the $f_{1}-f_{2}$ plane.

$$
\begin{aligned}
& {\left[\begin{array}{l}
f_{1} \\
f_{2}
\end{array}\right] }=\left[\begin{array}{cc}
1 & -2.41 \\
1 & -1
\end{array}\right]\left[\begin{array}{c}
\cos \alpha \\
\sin \alpha
\end{array}\right]=\left[\begin{array}{c}
\cos \alpha-2.41 \sin \alpha \\
\cos \alpha-\sin \alpha
\end{array}\right] \\
& \text { if } \alpha=0 \quad\left[\begin{array}{l}
f_{1} \\
f_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \text { if } \alpha=45^{\circ} \quad\left[\begin{array}{l}
f_{1} \\
f_{2}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
0
\end{array}\right] \quad \text { if } \alpha=90^{\circ} \quad\left[\begin{array}{l}
f_{1} \\
f_{2}
\end{array}\right]=\left[\begin{array}{c}
-2.41 \\
-1
\end{array}\right]
\end{aligned}
$$

- The force ellipsoid illustrates how easily the robot can generate forces in different directions.

Figure 5.6: Left-hand column: Manipulability ellipsoids at two different arm configu-
rations. Right-hand column: The force ellipsoids for the same two arm configurations.

- As is evident from the manipulability and force ellipsoids, if it is easy to generate a tip velocity in a given direction then it is difficult to generate a force in that same direction, and vice versa.
- For a given robot configuration, the principal axes of the manipulability ellipsoid and force ellipsoid are aligned, and the lengths of the principal semi-axes of the force ellipsoid are the reciprocals of the lengths of the principal semi-axes of the manipulability ellipsoid.
- At a singularity, the manipulability ellipsoid collapses to a line segment. The force ellipsoid, on the other hand, becomes infinitely long in a direction orthogonal to the manipulability ellipsoid line segment (i.e., the direction of the aligned links) and skinny in the orthogonal direction.
- Consider carrying a heavy suitcase with your arm. It is much easier if your arm hangs straight down under gravity (with your elbow fully straightened at a singularity), because the force you must support passes directly through your joints, therefore requiring no torques about the joints.

