## 제5장

## **Velocity Kinematics and Statics**

- This chapter deals with problem of calculating the twist of the end-effector of an open chain from a given set of joint positions and velocities.
- Consider the FK (forward kinematics) with a minimal set of coordinates  $x \in \Re^m$  and a set of joint variables  $\theta \in \Re^n$

$$x = f(\theta) \qquad \rightarrow \qquad \dot{x} = \frac{\partial f(\theta)}{\partial \theta^T} \frac{\partial \theta}{\partial t} = \frac{\partial f(\theta)}{\partial \theta^T} \dot{\theta} = J(\theta) \dot{\theta}$$

where  $J(\theta) \in \Re^{m \times n}$  is called the Jacobian.

• The Jacobian matrix represents the linear sensitivity of the end-effector velocity  $\dot{x}$  to the joint velocity  $\dot{\theta}$ , and it is a function of the joint variables  $\theta$ .



**Figure 5.1:** (Left) A 2R robot arm. (Right) Columns 1 and 2 of the Jacobian correspond to the endpoint velocity when  $\dot{\theta}_1 = 1$  (and  $\dot{\theta}_2 = 0$ ) and when  $\dot{\theta}_2 = 1$  (and  $\dot{\theta}_1 = 0$ ), respectively.

• Consider the FK of 2R planar open chain

$$x_{1} = L_{1} \cos \theta_{1} + L_{2} \cos(\theta_{1} + \theta_{2}) \qquad x_{2} = L_{1} \sin \theta_{1} + L_{2} \sin(\theta_{1} + \theta_{2})$$
$$\dot{x}_{1} = -L_{1} \sin \theta_{1} \dot{\theta}_{1} - L_{2} \sin(\theta_{1} + \theta_{2}) (\dot{\theta}_{1} + \dot{\theta}_{2}) \qquad \dot{x}_{2} = L_{1} \sin \theta_{1} \dot{\theta}_{1} + L_{2} \cos(\theta_{1} + \theta_{2}) (\dot{\theta}_{1} + \dot{\theta}_{2})$$

• Velocity kinematics using the Jacobian and its two column vectors

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -L_1 \sin \theta_1 - L_2 \sin(\theta_1 + \theta_2) & -L_2 \sin(\theta_1 + \theta_2) \\ L_1 \cos \theta_1 + L_2 \cos(\theta_1 + \theta_2) & L_2 \cos(\theta_1 + \theta_2) \end{bmatrix} \begin{bmatrix} \dot{\theta}_1 \\ \dot{\theta}_2 \end{bmatrix}$$
$$v_{tip} = J_1(\theta) \dot{\theta}_1 + J_2(\theta) \dot{\theta}_2$$

- As long as  $J_1(\theta)$  and  $J_2(\theta)$  are not collinear, it is possible to generate a tip velocity  $v_{tip}$  in any arbitrary direction in the  $x_1$ - $x_2$  plane by choosing appropriate joint velocities  $\dot{\theta}_1$  and  $\dot{\theta}_2$ .
- If  $\theta_2$  is  $0^{\circ}$  or  $180^{\circ}$ ,  $J_1(\theta)$  and  $J_2(\theta)$  are collinear regardless of  $\theta_1$  (singularity). If  $\theta_2 = 0$ ,

$$J_{1}(\theta) = \begin{bmatrix} -L_{1}\sin\theta_{1} - L_{2}\sin(\theta_{1}) \\ L_{1}\cos\theta_{1} + L_{2}\cos(\theta_{1}) \end{bmatrix} = \begin{bmatrix} -(L_{1} + L_{2})\sin\theta_{1} \\ (L_{1} + L_{2})\cos\theta_{1} \end{bmatrix} \qquad J_{2}(\theta) = \begin{bmatrix} -L_{2}\sin(\theta_{1}) \\ L_{2}\cos(\theta_{1}) \end{bmatrix} = \frac{L_{2}}{L_{1} + L_{2}}J_{1}(\theta)$$





**Figure 5.1:** (Left) A 2R robot arm. (Right) Columns 1 and 2 of the Jacobian correspond to the endpoint velocity when  $\dot{\theta}_1 = 1$  (and  $\dot{\theta}_2 = 0$ ) and when  $\dot{\theta}_2 = 1$  (and  $\dot{\theta}_1 = 0$ ), respectively.

**Figure 5.2:** Mapping the set of possible joint velocities, represented as a square in the  $\dot{\theta}_1 - \dot{\theta}_2$  space, through the Jacobian to find the parallelogram of possible end-effector velocities. The extreme points A, B, C, and D in the joint velocity space map to the extreme points A, B, C, and D in the end-effector velocity space.

• With  $L_1 = L_2 = 1$ , consider the robot at nonsingular configuration  $\theta_1 = 0$  and  $\theta_2 = \frac{\pi}{4}$ 

$$J\left(\begin{bmatrix}0\\\frac{\pi}{4}\end{bmatrix}\right) = \begin{bmatrix}-0.71 & -0.71\\1.71 & 0.71\end{bmatrix} \longrightarrow \begin{bmatrix}\dot{x}_1\\\dot{x}_2\end{bmatrix} = \begin{bmatrix}-0.71 & -0.71\\1.71 & 0.71\end{bmatrix}\begin{bmatrix}\dot{\theta}_1\\\dot{\theta}_2\end{bmatrix}$$

• The Jacobian can be used to map bounds on the rotational speed of the joints to bounds on  $v_{tip}$ . For example, if the maximal speeds of motors are bounded as  $\theta_{max,1} = 10[rad/s]$  and  $\theta_{max,2} = 10[rad/s]$ 

Point A
 
$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -0.71 & -0.71 \\ 1.71 & 0.71 \end{bmatrix} \begin{bmatrix} 10 \\ 10 \end{bmatrix} = \begin{bmatrix} -14.2 \\ 24.2 \end{bmatrix}$$

 Point B
  $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -0.71 & -0.71 \\ 1.71 & 0.71 \end{bmatrix} \begin{bmatrix} -10 \\ 10 \end{bmatrix} = \begin{bmatrix} 0 \\ -10 \end{bmatrix}$ 



**Figure 5.1:** (Left) A 2R robot arm. (Right) Columns 1 and 2 of the Jacobian correspond to the endpoint velocity when  $\dot{\theta}_1 = 1$  (and  $\dot{\theta}_2 = 0$ ) and when  $\dot{\theta}_2 = 1$  (and  $\dot{\theta}_1 = 0$ ), respectively.



• Rather than mapping a polygon of joint velocities through the Jacobian, we could instead map a unit circle  $(\dot{\theta}_1^2 + \dot{\theta}_2^2 = 1)$ , namely,  $\dot{\theta}_1 = \cos \alpha$  and  $\dot{\theta}_2 = \sin \alpha$  with  $\alpha \in [0, 2\pi)$ ) of joint velocities in the  $\dot{\theta}_1 - \dot{\theta}_2$  plane.

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -0.71 & -0.71 \\ 1.71 & 0.71 \end{bmatrix} \begin{bmatrix} \cos \alpha \\ \sin \alpha \end{bmatrix} = \begin{bmatrix} -0.71(\cos \alpha + \sin \alpha) \\ \cos \alpha + 0.71(\cos \alpha + \sin \alpha) \end{bmatrix}$$
  
if  $\alpha = 0$  
$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -0.71 \\ 1.71 \end{bmatrix}$$
 if  $\alpha = 45^{\circ}$  
$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -1 \\ 1.71 \end{bmatrix}$$
 if  $\alpha = 90^{\circ}$  
$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -0.71 \\ 0.71 \end{bmatrix}$$

- This circle maps through the Jacobian to an ellipse in the space of tip velocities, and this ellipse is referred to as the manipulability ellipsoid.
- As the manipulator configuration approaches a singularity, the ellipse collapses to a line segment, since the ability of the tip to move in one direction is lost.
- The closer the ellipsoid is to a circle, i.e., the closer the ratio  $\frac{l_{max}}{l_{min}}$  is to 1, the more easily can the tip move in arbitrary directions and thus the more removed it is from a singularity.

The Jacobian also plays a central role in static analysis.

- Suppose that an external force is applied to the robot tip. What are the joint torques required to resist this external force?
- The conservation of power, assuming that negligible power is used to move the robot

$$f_{tip}^T v_{tip} = \tau^T \dot{\theta} \longrightarrow f_{tip}^T J(\theta) \dot{\theta} = \tau^T \dot{\theta} \longrightarrow \tau = J^T(\theta) f_{tip}$$

where the joint torque  $\tau$  needed to create the tip force  $f_{tip}$  is calculated from the equation above.

• If the inverse of  $J^T(\theta)$  exists,

$$f_{tip} = J^{-T}(\theta)\tau$$





**Figure 5.1:** (Left) A 2R robot arm. (Right) Columns 1 and 2 of the Jacobian correspond to the endpoint velocity when  $\dot{\theta}_1 = 1$  (and  $\dot{\theta}_2 = 0$ ) and when  $\dot{\theta}_2 = 1$  (and  $\dot{\theta}_1 = 0$ ), respectively.

Figure 5.4: Mapping joint torque bounds to tip force bounds.

• From the previous example,

$$J\left(\begin{bmatrix}0\\\\\frac{\pi}{4}\end{bmatrix}\right) = \begin{bmatrix}-0.71 & -0.71\\1.71 & 0.71\end{bmatrix} \rightarrow \tau = J^{T}(\theta)f_{tip} \rightarrow \begin{bmatrix}\tau_{1}\\\\\tau_{2}\end{bmatrix} = \begin{bmatrix}-0.71 & 1.71\\-0.71 & 0.71\end{bmatrix}\begin{bmatrix}f_{1}\\\\f_{2}\end{bmatrix} \rightarrow \begin{bmatrix}f_{1}\\\\f_{2}\end{bmatrix} = \begin{bmatrix}1 & -2.41\\1 & -1\end{bmatrix}\begin{bmatrix}\tau_{1}\\\\\tau_{2}\end{bmatrix}$$

• The inverse of Jacobian transpose can be used to map bounds on motor torques  $\tau$  to bounds on  $f_{tip}$ . For example, if the maximal torques of motors are bounded as  $\tau_{max,1} = 10[Nm]$  and  $\tau_{max,2} = 10[Nm]$ 

Point A 
$$\begin{bmatrix} f_1 \\ f_2 \end{bmatrix} = \begin{bmatrix} 1 & -2.41 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 10 \\ 10 \end{bmatrix} = \begin{bmatrix} -14.1 \\ 0 \end{bmatrix}$$
  
Point B 
$$\begin{bmatrix} f_1 \\ f_2 \end{bmatrix} = \begin{bmatrix} 1 & -2.41 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} -10 \\ 10 \end{bmatrix} = \begin{bmatrix} -34.1 \\ -20 \end{bmatrix}$$



Figure 5.5: Force ellipsoids for two different postures of the 2R planar open chain.

- As for the manipulability ellipsoid, a force ellipsoid can be drawn by mapping a unit circle contour in the  $\tau_1 - \tau_2$  plane to an ellipsoid in the  $f_1 - f_2$  tip-force plane via the Jacobian transpose inverse  $J^{-T}(\theta).$
- Let us obtain unit circle contour ( $\tau_1^2 + \tau_2^2 = 1$ , namely,  $\tau_1 = \cos \alpha$  and  $\tau_2 = \sin \alpha$  with  $\alpha \in [0, 2\pi)$ ) of joint torques in the  $f_1 - f_2$  plane.

$$\begin{bmatrix} f_1 \\ f_2 \end{bmatrix} = \begin{bmatrix} 1 & -2.41 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} \cos \alpha \\ \sin \alpha \end{bmatrix} = \begin{bmatrix} \cos \alpha - 2.41 \sin \alpha \\ \cos \alpha - \sin \alpha \end{bmatrix}$$
  
if  $\alpha = 0$ 

$$\begin{bmatrix} f_1 \\ f_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
if  $\alpha = 45^{\circ}$ 

$$\begin{bmatrix} f_1 \\ f_2 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$
if  $\alpha = 90^{\circ}$ 

$$\begin{bmatrix} f_1 \\ f_2 \end{bmatrix} = \begin{bmatrix} -2.41 \\ -1 \end{bmatrix}$$

• The force ellipsoid illustrates how easily the robot can generate forces in different directions.



Figure 5.6: Left-hand column: Manipulability ellipsoids at two different arm configurations. Right-hand column: The force ellipsoids for the same two arm configurations.

- As is evident from the manipulability and force ellipsoids, if it is easy to generate a tip velocity in a given direction then it is difficult to generate a force in that same direction, and vice versa.
- For a given robot configuration, the principal axes of the manipulability ellipsoid and force ellipsoid are aligned, and the lengths of the principal semi-axes of the force ellipsoid are the reciprocals of the lengths of the principal semi-axes of the manipulability ellipsoid.
- At a singularity, the manipulability ellipsoid collapses to a line segment. The force ellipsoid, on the other hand, becomes infinitely long in a direction orthogonal to the manipulability ellipsoid line segment (i.e., the direction of the aligned links) and skinny in the orthogonal direction.
- Consider carrying a heavy suitcase with your arm. It is much easier if your arm hangs straight down under gravity (with your elbow fully straightened at a singularity), because the force you must support passes directly through your joints, therefore requiring no torques about the joints.