

Figure 4.4: PoE forward kinematics for the 6 R open chain.

Example 4.3. (6R spatial open chain). Find the FK?
The forward kinematics using the space form of the PoE

$$
T=e^{\left[\mathcal{S}_{1}\right] \theta_{1}} \ldots e^{\left[\mathcal{S}_{6}\right] \theta_{6}} M \quad \text { with } \quad M=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 3 L \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

and	ω_{i}	v_{i}	
	$(0,0,1)$	$(0,0,0)$	
	2	$(0,1,0)$	$(0,0,0)$
3	$(-1,0,0)$	$(0,0,0)$	
	4	$(-1,0,0)$	$(0,0, \mathrm{~L})$
	5	$(-1,0,0)$	$(0,0,2 \mathrm{~L})$
	6	$(0,1,0)$	$(0,0,0)$

Figure 4.5: The RRPRRR spatial open chain.

Example 4.4. (An RRPRRR spatial open chain). Find the FK?
The forward kinematics using the space form of the PoE

$$
T=e^{\left[\mathcal{S}_{1}\right] \theta_{1}} \ldots e^{\left[\mathcal{S}_{6}\right] \theta_{6}} M \quad \text { with } \quad M=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & L_{1}+L_{2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \text { and } \begin{array}{c|c|c}
\hline 1 & (0,0,1) & (0,0,0) \\
2 & (1,0,0) & (0,0,0) \\
3 & (0,0,0) & (0,1,0) \\
4 & (0,1,0) & (0,0,0) \\
5 & (1,0,0) & \left(0,0,-L_{1}\right) \\
6 & (0,1,0) & (0,0,0) \\
\hline
\end{array}
$$

Note that the third joint is prismatic, so that $\omega_{3}=0$ and v_{3} is a unit vector in the direction of positive translation.

Figure 4.6: (Left) Universal Robots' UR5 6R robot arm. (Right) Shown at its zero position. Positive rotations about the axes indicated are given by the usual right-hand rule. W_{1} is the distance along the $\hat{\mathrm{y}}_{\mathrm{s}}$-direction between the anti-parallel axes of joints 1 and $5 . W_{1}=109 \mathrm{~mm}, W_{2}=82 \mathrm{~mm}, L_{1}=425 \mathrm{~mm}, L_{2}=392 \mathrm{~mm}, H_{1}=89 \mathrm{~mm}$, $H_{2}=95 \mathrm{~mm}$.

Example 4.5. (Universal Robots' UR5 $6 R$ robot arm). Find the $F K$ at $\theta=\left(0,-\frac{\pi}{2}, 0,0, \frac{\pi}{2}, 0\right)$
The forward kinematics using the space form of the PoE

$$
T=e^{\left[\mathcal{S}_{1}\right] \theta_{1}} \cdots e^{\left[\mathcal{S}_{6}\right] \theta_{6}} M \quad \text { with } \quad M=\left[\begin{array}{cccc}
-1 & 0 & 0 & L_{1}+L_{2} \\
0 & 0 & 1 & W_{1}+W_{2} \\
0 & 1 & 0 & H_{1}-H_{2} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

	i	ω_{i}	v_{i}
and	$(0,0,0)$		
	1	$(0,0,1)$	$\left(-H_{1}, 0,0\right)$
	$(0,1,0)$	$\left(-H_{1}, 0, L_{1}\right)$	
	3	$(0,1,0)$	$\left(-H_{1}, 0, L_{1}+L_{2}\right)$
4	$(0,1,0)$	$\left(-W_{1}, L_{1}+L_{2}, 0\right)$	
5	$(0,0,-1)$	$\left(H_{2}-H_{1}, 0, L_{1}+L_{2}\right)$	

The configuration of the end-effector at $\theta=\left(0,-\frac{\pi}{2}, 0,0, \frac{\pi}{2}, 0\right)$ is

$$
\begin{aligned}
& T=e^{\left[\mathcal{S}_{1}\right] \theta_{1}} e^{\left[\mathcal{S}_{2}\right] \theta_{2}} e^{\left[\mathcal{S}_{3}\right] \theta_{3}} e^{\left[\mathcal{S}_{4}\right] \theta_{4}} e^{\left[\mathcal{S}_{5}\right] \theta_{5}} e^{\left[\mathcal{S}_{6}\right] \theta_{6}} M \\
&=e^{0} e^{-\left[\mathcal{S}_{2}\right] \frac{\pi}{2}} e^{0} e^{0} e^{\left[\mathcal{S}_{5}\right] \frac{\pi}{2}} e^{0} M \\
& \text { since } e^{0}=I \\
&=e^{-\left[\mathcal{S}_{2}\right] \frac{\pi}{2}} e^{\left[\mathcal{S}_{5}\right] \frac{\pi}{2}} M=\left[\begin{array}{cccc}
0 & -1 & 0 & 0.095 \\
1 & 0 & 0 & 0.109 \\
0 & 0 & 1 & 0.988 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Figure 4.7: (Left) The UR5 at its home position, with the axes of joints 2 and 5 indicated. (Right) The UR5 at joint angles $\theta=\left(\theta_{1}, \ldots, \theta_{6}\right)=(0,-\pi / 2,0,0, \pi / 2,0)$.

1.3 Second Formula: Screw Axes in End-Effector Frame (body form of PoE)

- The matrix identity can be expressed as

$$
\text { if } A=M^{-1} P M \quad \text { then } \quad e^{A}=e^{M^{-1} P M}=M^{-1} e^{P} M \quad \leftrightarrow \quad M e^{M^{-1} P M}=e^{P} M
$$

- Beginning with the rightmost term of the previously derived space form of PoE , if we repeatedly apply this identity, then after n iterations we obtain

$$
\begin{aligned}
T(\theta) & =e^{\left[\mathcal{S}_{1}\right] \theta_{1}} \cdots e^{\left[\mathcal{S}_{n-1}\right] \theta_{n-1}} e^{\left[\mathcal{S}_{n}\right] \theta_{n}} M \\
& =e^{\left[\mathcal{S}_{1}\right] \theta_{1}} \cdots e^{\left[\mathcal{S}_{n-1}\right] \theta_{n-1}} M e^{M^{-1}\left[\mathcal{S}_{n}\right] M \theta_{n}} \\
& =e^{\left[\mathcal{S}_{1}\right] \theta_{1}} \cdots M e^{M^{-1}\left[\mathcal{S}_{n-1}\right] M \theta_{n-1}} e^{M^{-1}\left[\mathcal{S}_{n}\right] M \theta_{n}} \\
& =M e^{M^{-1}\left[\mathcal{S}_{1}\right] M \theta_{1}} \cdots e^{M^{-1}\left[\mathcal{S}_{n-1}\right] M \theta_{n-1}} e^{M^{-1}\left[\mathcal{S}_{n}\right] M \theta_{n}} \\
& =M e^{\left[\mathcal{B}_{1}\right] \theta_{1}} \cdots e^{\left[\mathcal{B}_{n-1}\right] \theta_{n-1}} e^{\left[\mathcal{B}_{n}\right] \theta_{n}}
\end{aligned}
$$

where $\left[\mathcal{B}_{i}\right]=M^{-1}\left[\mathcal{S}_{i}\right] M$ i.e.,

$$
\mathcal{B}_{i}=\left[A d_{M^{-1}}\right] \mathcal{S}_{i} \quad \text { for } \quad i=1,2, \cdots, n
$$

- Above equation is an alternative form of the PoE formula, representing the joint axes as screw axes \mathcal{B}_{i} in the end-effector (body) frame when the robot is at its zero position.
- It is called the body form of the PoE formula.
- In the space form,

$$
T(\theta)=e^{\left[\mathcal{S}_{1}\right] \theta_{1}} \cdots e^{\left[\mathcal{S}_{n-1}\right] \theta_{n-1}} e^{\left[\mathcal{S}_{n}\right] \theta_{n}} M
$$

- M is first transformed by the most distal joint, progressively moving inward to more proximal joints.
- The fixed space-frame representation of the screw axis for a more proximal joint is not affected by the joint displacement at a distal joint
- Joint 3's displacement does not affect joint 2's screw axis representation in the space frame.
- In the body form,

$$
T(\theta)=M e^{\left[\mathcal{B}_{1}\right] \theta_{1}} \cdots e^{\left[\mathcal{B}_{n-1}\right] \theta_{n-1}} e^{\left[\mathcal{B}_{n}\right] \theta_{n}}
$$

- M is first transformed by the first joint, progressively moving outward to more distal joints.
- The body-frame representation of the screw axis for a more distal joint is not affected by the joint displacement at a proximal joint
- Joint 2's displacement does not affect joint 3's screw axis representation in the body frame.
- Relationship bw screw axis of the space form and screw axis of the body form

$$
\begin{array}{rll}
{\left[\mathcal{B}_{i}\right]=M^{-1}\left[\mathcal{S}_{i}\right] M} & \leftrightarrow & \mathcal{B}_{i}=\left[A d_{M^{-1}}\right] \mathcal{S}_{i} \\
{\left[\mathcal{S}_{i}\right]=M\left[\mathcal{B}_{i}\right] M^{-1}} & \leftrightarrow & \mathcal{S}_{i}=\left[A d_{M}\right] \mathcal{B}_{i}
\end{array}
$$

for $i=1,2, \cdots, n$

Figure 4.4: PoE forward kinematics for the 6 R open chain.

Example 4.6. (6R spatial open chain) Find the FK using the body form of the PoE?
The forward kinematics using the body form of the PoE

$$
T=M e^{\left[\mathcal{B}_{1}\right] \theta_{1}} \cdots e^{\left[\mathcal{B}_{6}\right] \theta_{6}} \quad \text { with } \quad M=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 3 L \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

i	ω_{i}	v_{i}
1	$(0,0,1)$	$(-3 L, 0,0)$
2	$(0,1,0)$	$(0,0,0)$
3	$(-1,0,0)$	$(0,0,-3 L)$
4	$(-1,0,0)$	$(0,0,-2 L)$
5	$(-1,0,0)$	$(0,0,-L)$
6	$(0,1,0)$	$(0,0,0)$

Figure 4.8: Barrett Technology's WAM 7R robot arm at its zero configuration (right) At the zero configuration, axes $1,3,5$, and 7 are along \hat{z}_{s} and axes 2,4 , and 6 are aligned with $\hat{\mathbf{y}}_{\mathrm{s}}$ out of the page. Positive rotations are given by the right-hand rule. Axes 1, 2, and 3 intersect at the origin of $\{\mathrm{s}\}$ and axes 5, 6 , and 7 intersect at a point 60 mm from $\{\mathrm{b}\}$. The zero configuration is singular, as discussed in Section 5.3.

Example 4.7. (Barrett WAM 7R robot arm). Find the FK using the body form of PoE at $\theta=\left(0, \frac{\pi}{4}, 0,-\frac{\pi}{4}, 0,-\frac{\pi}{2}, 0\right)$ The forward kinematics using the body form of the PoE

$$
T=M e^{\left[\mathcal{B}_{1}\right] \theta_{1}} \cdots e^{\left[\mathcal{B}_{7}\right] \theta_{7}} \quad \text { with } \quad M=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & L_{1}+L_{2}+L_{3} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

i	ω_{i}	v_{i}
1	$(0,0,1)$	$(0,0,0)$
2	$(0,1,0)$	$\left(L_{1}+L_{2}+L_{3}, 0,0\right)$
3	$(0,0,1)$	$(0,0,0)$
4	$(0,1,0)$	$\left(L_{2}+L_{3}, 0, W_{1}\right)$
5	$(0,0,1)$	$(0,0,0)$
6	$(0,1,0)$	$\left(L_{3}, 0,0\right)$
7	$(0,0,1)$	$(0,0,0)$

The configuration at $\theta=\left(0, \frac{\pi}{4}, 0,-\frac{\pi}{4}, 0,-\frac{\pi}{2}, 0\right)$ is

$$
\begin{aligned}
T & =M e^{\left[\mathcal{B}_{1}\right] \theta_{1}} \cdots e^{\left[\mathcal{B}_{7}\right] \theta_{7}} \\
& =M e^{0} e^{\left[\mathcal{B}_{2}\right] \theta_{2}} e^{0} e^{\left[\mathcal{B}_{4}\right] \theta_{4}} e^{0} e^{\left[\mathcal{B}_{6}\right] \theta_{6}} e^{0} \\
& =M e^{\left[\mathcal{B}_{2}\right] \frac{\pi}{4}} e^{-\left[\mathcal{B}_{4}\right] \frac{\pi}{4}} e^{-\left[\mathcal{B}_{6}\right] \frac{\pi}{2}}=\left[\begin{array}{cccc}
0 & 0 & -1 & 0.3157 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0.6571 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Figure 4.9: (Left) The WAM at its home configuration, with the axes of joints 2, 4, and 6 indicated. (Right) The WAM at $\theta=\left(\theta_{1}, \ldots, \theta_{7}\right)=(0, \pi / 4,0,-\pi / 4,0,-\pi / 2,0)$.

2 Homework : Chapter 4

- Please solve and submit Exercise 4.2, 4.5, 4.7, 4.8, 4.10, 4.12, 4.15, 4.18, 4.20, till April 16 (upload it as a pdf form or email me)
- If you let me know what the numbers you cannot solve until April 14, I will include the solving process in the next lecture.

