3.3 Exponential Coordinate Representation of Rigid-Body Motions

Exponential Coordinates of Rigid-Body Motions

- Chasles-Mozzi theorem: every rigid-body displacement can be expressed as a displacement along a fixed screw axis \mathcal{S} in space.
- (In the previous lecture) The exponential coordinates $\hat{\omega} \theta$ for rotation:

$$
\begin{array}{rll}
\text { matrix exponential : } & {[\hat{\omega}] \theta \in s o(3)} & \rightarrow \\
\text { matrix logarithm : } & R=e^{[\hat{\omega}] \theta} \in S O(3) & \rightarrow \quad[\hat{\omega}] \theta \in \operatorname{son}(3) \theta
\end{array}
$$

- By analogy to the exponential coordinates $\hat{\omega} \theta$ for rotations R, let us define the six-dimensional exponential coordinates of a homogeneous transformation T as $\mathcal{S} \theta \in \Re^{6}$, where θ is the distance that must be traveled along the screw axis to take a frame from the origin I to T.
- If the pitch of the screw axis $\mathcal{S}=(\omega, v)$ is finite then $\|\omega\|=1$ and θ corresponds to the angle of rotation about the screw axis.
- If the pitch of the screw is infinite then $\omega=0$ and $\|v\|=1$ and θ corresponds to the linear distance traveled along the screw axis.
- Also by analogy to the rotation case, let us define a matrix exponential (exp) and matrix logarithm (log):

$$
\begin{array}{rll}
\text { matrix exponential : } & {[\mathcal{S}] \theta \in s e(3) \quad \rightarrow} & T=e^{[\mathcal{S}] \theta} \in S E(3) \\
\text { matrix logarithm : } & T=e^{[\mathcal{S}] \theta} \in S E(3) & \rightarrow \quad[\mathcal{S}] \theta \in \operatorname{se}(3)
\end{array}
$$

- Expanding the matrix exponential in series form leads to

$$
\begin{aligned}
e^{[\mathcal{S} \mid \theta} & =I_{4 \times 4}+[\mathcal{S}] \theta+[\mathcal{S}]^{2} \frac{\theta^{2}}{2!}+[\mathcal{S}]^{3} \frac{\theta^{3}}{3!}+\cdots=\left[\begin{array}{cc}
I_{3 \times 3}+[\omega] \theta+[\omega]^{2} \frac{\theta^{2}}{2!}+[\omega]^{3} \frac{\theta^{3}}{3!}+\cdots v \theta+[\omega] v \frac{\theta^{2}}{2!}+[\omega]^{2} v \frac{\theta^{3}}{3!}+\cdots \\
0_{3 \times 1} & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
e^{[\omega] \theta} & G(\theta) v \\
0_{3 \times 1} & 1
\end{array}\right]
\end{aligned}
$$

where

$$
\begin{aligned}
{[\mathcal{S}]^{2} } & =\left[\begin{array}{cc}
{[\omega]} & v \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
{[\omega]} & v \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
{[\omega]^{2}} & {[\omega] v} \\
0 & 0
\end{array}\right] \\
G(\theta) & =I \theta+[\omega] \frac{\theta^{2}}{2!}+[\omega]^{2} \frac{\theta^{3}}{3!}+[\omega]^{3} \frac{\theta^{4}}{4!}+[\omega]^{\frac{\theta}{}} \frac{\theta^{5}}{5!}+\cdots \\
& =I \theta+[\omega] \frac{\theta^{2}}{2!}+[\omega]^{2} \frac{\theta^{3}}{3!}-[\omega] \frac{\theta^{4}}{4!}-[\omega]^{2} \frac{\theta^{5}}{5!}+\cdots \\
& =I \theta+\left(\frac{\theta^{2}}{2!}-\frac{\theta^{4}}{4!}+\cdots\right)[\omega]+\left(\frac{\theta^{3}}{3!}-\frac{\theta^{5}}{5!}+\cdots\right)[\omega]^{2} \\
& =I \theta+(1-\cos \theta)[\omega]+(\theta-\sin \theta)[\omega]^{2}
\end{aligned}
$$

Proposition 3.13. Let $\mathcal{S}=(\omega, v)$ be a screw axis. If $\|\omega\|=1$ or if $\omega=0$ and $\|v\|=1$, then, for any distance $\theta \in \Re$ traveled along the axis, respectively,

$$
e^{[\mathcal{S}] \theta}=\left[\begin{array}{cc}
e^{[\omega] \theta} & \left(I \theta+(1-\cos \theta)[\omega]+(\theta-\sin \theta)[\omega]^{2}\right) v \\
0_{3 \times 1} & 1
\end{array}\right] \quad e^{[\mathcal{S}] \theta}=\left[\begin{array}{cc}
I & v \theta \\
0_{3 \times 1} & 1
\end{array}\right]
$$

Matrix Logarithm of Rigid-Body Motions

- On the contrary, for given an arbitrary $T=(R, p) \in S E(3)$, one can always find a screw axis $\mathcal{S}=(\omega, v)$ and a scalar θ such that

$$
e^{[\mathcal{S}] \theta}=\left[\begin{array}{cc}
R & p \\
0_{3 \times 1} & 1
\end{array}\right] \in S E(3) \quad \rightarrow \quad[\mathcal{S}] \theta=\left[\begin{array}{cc}
{[\omega] \theta} & v \theta \\
0_{3 \times 1} & 0
\end{array}\right] \in s e(3)
$$

where $[\mathcal{S}] \theta$ is the matrix logarithm of $T=(R, p)$.
Algorithm 3.2. Given (R, p) written as $T \in S E(3)$, find $a \theta \in[0, \pi]$ and a screw axis $S=(\omega, v) \in \Re^{6}$ (where at least one of $\|\omega\|=1$ and $\|v\|$ is unity) such that $e^{[\mathcal{S}] \theta}=T$. The vector $\mathcal{S} \theta \in \Re^{6}$ comprises the exponential coordinates for T and the matrix $[\mathcal{S}] \theta \in$ se(3) is the matrix logarithm of T.

- If $R=I$ then set $\omega=0, v=\frac{p}{\|p\|}$ and $\theta=\|p\|$
- Otherwise, use the matrix logarithm on $S O(3)$ to determine ω (written as in the $S O(3)$ algorithm) and θ for R. Then v is calculated as

$$
v=G(\theta)^{-1} p
$$

where

$$
G(\theta)^{-1}=\frac{1}{\theta} I-\frac{1}{2}[\omega]+\left(\frac{1}{\theta}-\frac{1}{2} \cot \frac{\theta}{2}\right)[\omega]^{2}
$$

Figure 3.20: Two frames in a plane.

Example 3.4. Assume the he rigid-body motion is confined to the $\hat{x}_{s}-\hat{y}_{s}$ plane. The initial frame $\{b\}$ and final frame $\{c\}$ can be represented by the $S E(3)$ matrices

$$
T_{s b}=\left[\begin{array}{cccc}
\cos 30^{\circ} & -\sin 30^{\circ} & 0 & 1 \\
\sin 30^{\circ} & \cos 30^{\circ} & 0 & 2 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
T_{s c}=\left[\begin{array}{cccc}
\cos 60^{\circ} & -\sin 60^{\circ} & 0 & 2 \\
\sin 60^{\circ} & \cos 60^{\circ} & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- Assume the exponential coordinates are expressed in the fixed frame $\{s\}$, then we have

$$
e^{[\mathcal{S} \mid \theta} T_{s b}=T_{s c} \quad \rightarrow \quad e^{[\mathcal{S}] \theta}=T_{s c} T_{s b}^{-1}=\left[\begin{array}{cccc}
\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 2.134 \\
\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 & -1.232 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=T(R, p)
$$

- Find θ from the rotation matrix

$$
\theta=\cos ^{-1}\left(\frac{\operatorname{tr}(R)-1}{2}\right)=\cos ^{-1} \frac{\sqrt{3}}{2}=30^{\circ}=0.5236 \mathrm{rad}
$$

- Find $\hat{\omega}$ from the rotation matrix

$$
[\hat{\omega}]=\frac{1}{2 \sin \theta}\left(R-R^{T}\right)=\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{ccc}
0 & -\hat{\omega}_{3} & \hat{\omega}_{2} \\
\hat{\omega}_{3} & 0 & -\hat{\omega}_{1} \\
-\hat{\omega}_{2} & \hat{\omega}_{1} & 0
\end{array}\right] \quad \rightarrow \quad \hat{\omega}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

- Find v from $v=G(\theta)^{-1} p$

$$
\begin{aligned}
v & =G(\theta)^{-1} p=\left[\frac{1}{\theta} I-\frac{1}{2}[\omega]+\left(\frac{1}{\theta}-\frac{1}{2} \cot \frac{\theta}{2}\right)[\omega]^{2}\right] p \\
& =\left[1.9096\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]-0.5\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]+0.0439\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]\right]\left[\begin{array}{c}
2.134 \\
-1.232 \\
0
\end{array}\right]
\end{aligned}
$$

$$
v=\left[\begin{array}{ccc}
1.8658 & 0.5 & 0 \\
-0.5 & 1.8658 & 0 \\
0 & 0 & 1.9096
\end{array}\right]\left[\begin{array}{c}
2.134 \\
-1.232 \\
0
\end{array}\right]=\left[\begin{array}{c}
3.37 \\
-3.37 \\
0
\end{array}\right]
$$

- Find the screw axis \mathcal{S}, and the exponential coordinates (normalized twist)

$$
\mathcal{S}=\left[\begin{array}{c}
\omega \\
v
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
1 \\
3.37 \\
-3.37 \\
0
\end{array}\right] \quad \mathcal{S} \theta=\left[\begin{array}{c}
\omega \\
v
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
0.5236 \\
1.7622 \\
-1.7622 \\
0
\end{array}\right]
$$

- Alternatively,
- we can observe that the displacement is not a pure translation - $T_{s b}$ and $T_{s c}$ have rotation components that differ by an angle of $\theta=30^{\circ}$ and $\omega_{z}=1$.
- we can also graphically determine the point $q=\left(q_{x}, q_{y}\right)$ in the $\hat{x}_{s}-\hat{y}_{s}$ plane through which the screw axis passes; for our example this point is given by $q=(3.37,3.37)$.

Figure 3.21: Relation between wrench representations \mathcal{F}_{a} and \mathcal{F}_{b}.

4 Wrenches

- Consider a linear force f acting on a rigid body at a point r.
- Defining a reference frame $\{\mathrm{a}\}$, the point r can be represented as $r_{a} \in \Re^{3}$ and the force f can be represented as $f_{a} \in \Re^{3}$.
- This force creates a torque or moment $m_{a} \in \Re^{3}$ in the $\{\mathbf{a}\}$ frame:

$$
m_{a}=r_{a} \times f_{a}
$$

- Just as with twists, we can merge the moment and force into a single six-dimensional spatial force, or wrench, expressed in the $\{a\}$ frame,

$$
\mathcal{F}_{a}=\left[\begin{array}{c}
m_{a} \\
f_{a}
\end{array}\right] \in \Re^{6}
$$

- A wrench with a zero linear component is called a pure moment.

Figure 3.21: Relation between wrench representations \mathcal{F}_{a} and \mathcal{F}_{b}.

- A wrench and twist in the $\{a\}$ frame can be represented in another frame $\{b\}$
- Since the power is coordinate-independent quantity, we have

$$
\mathcal{V}_{b}^{T} \mathcal{F}_{b}=\mathcal{V}_{a}^{T} \mathcal{F}_{a}=\left(\left[A d_{T_{a b}}\right] \mathcal{V}_{b}\right)^{T} \mathcal{F}_{a}=\mathcal{V}_{b}^{T}\left[A d_{T_{a b}}\right]^{T} \mathcal{F}_{a}
$$

Proposition 3.14. Given a wrench F, represented in $\{a\}$ as \mathcal{F}_{a} and in $\{b\}$ as \mathcal{F}_{b}, two representations are related by

$$
\begin{aligned}
& \mathcal{F}_{b}=\left[A d_{T_{a b}}\right]^{T} \mathcal{F}_{a}=A d_{T_{a b}}^{T} \mathcal{F}_{a} \\
& \mathcal{F}_{a}=\left[A d_{T_{b a}}\right]^{T} \mathcal{F}_{b}=A d_{T_{b a}}^{T} \mathcal{F}_{b}
\end{aligned}
$$

- Spatial wrench \mathcal{F}_{s} in $\{\mathrm{s}\}$ and body wrench \mathcal{F}_{b} in $\{\mathrm{b}\}$

Figure 3.22: A robot hand holding an apple subject to gravity.

Example 3.5. What is the force and torque measured by the six-axis force-torque sensor b/w the hand and the arm? (mass of apple : 0.1[kg], mass of hand : $0.5[\mathrm{~kg}], g=10\left[\mathrm{~m} / \mathrm{s}^{2}\right], L_{1}=0.1[\mathrm{~m}]$, and $L_{2}=0.15[\mathrm{~m}]$) where $\{f\}$ is attached to the force-torque sensor, $\{h\}$ to CoM of hand, $\{a\}$ to CoM of apple

- Gravitational wrench on the hand in $\{\mathrm{h}\}$ is given by

$$
\mathcal{F}_{h}=(0,0,0,0,-5 N, 0)
$$

- Gravitational wrench on the apple in $\{\mathrm{a}\}$ is given by

$$
\mathcal{F}_{h}=(0,0,0,0,0,1 N)
$$

- Transformation matrices

$$
T_{h f}=\left[\begin{array}{cccc}
1 & 0 & 0 & -0.1[m] \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
T_{a f}=\left[\begin{array}{cccc}
1 & 0 & 0 & -0.25[m] \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- Wrench measured by the six-axis force-torque sensor is

$$
\begin{aligned}
\mathcal{F}_{f} & =\left[A d_{T_{h f}}\right]^{T} \mathcal{F}_{h}+\left[A d_{T_{a f}}\right]^{T} \mathcal{F}_{a} \\
& =\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0.1 & 0 & 1 & 0 \\
0 & -0.1 & 0 & 0 & 0 & 1
\end{array}\right]^{T}\left[\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
-5 \\
0
\end{array}\right]+\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0.25 & 0 & 0 & 0 & 1 \\
0 & 0 & -0.25 & 0 & -1 & 0
\end{array}\right]^{T}\left[\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
-0.5 \\
0 \\
-5 \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
-0.25 \\
0 \\
-1 \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
-0.75 \\
0 \\
-6 \\
0
\end{array}\right]
\end{aligned}
$$

Rotations	Rigid-Body Motions						
$R \in S O(3): 3 \times 3$ matrices $R^{\mathrm{T}} R=I, \operatorname{det} R=1$	$\begin{gathered} T \in S E(3): 4 \times 4 \text { matrices } \\ T=\left[\begin{array}{cc} R & p \\ 0 & 1 \end{array}\right] \\ \text { where } R \in S O(3), p \in \mathbb{R}^{3} \end{gathered}$						
$R^{-1}=R^{\mathrm{T}}$	$T^{-1}=\left[\begin{array}{cc}R^{\mathrm{T}} & -R^{\mathrm{T}} p \\ 0 & 1\end{array}\right]$						
change of coordinate frame: $R_{a b} R_{b c}=R_{a c}, \quad R_{a b} p_{b}=p_{a}$	change of coordinate frame: $T_{a b} T_{b c}=T_{a c}, \quad T_{a b} p_{b}=p_{a}$						
$\begin{aligned} & \text { rotating a frame }\{\mathrm{b}\}: \\ & \qquad R=\operatorname{Rot}(\hat{\omega}, \theta) \\ & \quad R_{s b^{\prime}}=R R_{s b}: \\ & \text { rotate } \theta \text { about } \hat{\omega}_{s}=\hat{\omega} \\ & \quad R_{s b^{\prime \prime}}=R_{s b} R: \\ & \text { rotate } \theta \text { about } \hat{\omega}_{b}=\hat{\omega} \end{aligned}$	displacing a frame $\{\mathrm{b}\}$: $T=\left[\begin{array}{cc} \operatorname{Rot}(\hat{\omega}, \theta) & p \\ 0 & 1 \end{array}\right]$ $T_{s b^{\prime}}=T T_{s b}$: rotate θ about $\hat{\omega}_{s}=\hat{\omega}$ (moves $\{\mathrm{b}\}$ origin), translate p in $\{\mathrm{s}\}$ $T_{s b^{\prime \prime}}=T_{s b} T$: translate p in $\{\mathrm{b}\}$, rotate θ about $\hat{\omega}$ in new body frame						
unit rotation axis is $\hat{\omega} \in \mathbb{R}^{3}$, where $\\|\hat{\omega}\\|=1$	"unit" screw axis is $\mathcal{S}=\left[\begin{array}{l}\omega \\ v\end{array}\right] \in \mathbb{R}^{6}$, where either (i) $\\|\omega\\|=1$ or (ii) $\omega=0$ and $\\|v\\|=1$						
	for a screw axis $\{q, \hat{s}, h\}$ with finite h, $\mathcal{S}=\left[\begin{array}{l} \omega \\ v \end{array}\right]=\left[\begin{array}{c} \hat{s} \\ -\hat{s} \times q+h \hat{s} \end{array}\right]$						
angular velocity is $\omega=\hat{\omega} \dot{\theta}$	twist is $\mathcal{V}=\mathcal{S} \dot{\theta}$						

Rotations (cont.)	Rigid-Body Motions (cont.)
for any 3 -vector, e.g., $\omega \in \mathbb{R}^{3}$, $[\omega]=\left[\begin{array}{ccc} 0 & -\omega_{3} & \omega_{2} \\ \omega_{3} & 0 & -\omega_{1} \\ -\omega_{2} & \omega_{1} & 0 \end{array}\right] \in \operatorname{so}(3)$ identities, $\omega, x \in \mathbb{R}^{3}, R \in S O(3)$: $[\omega]=-[\omega]^{\mathrm{T}},[\omega] x=-[x] \omega,$ $[\omega][x]=([x][\omega])^{\mathrm{T}}, R[\omega] R^{\mathrm{T}}=[R \omega]$	$\begin{gathered} \text { for } \mathcal{V}=\left[\begin{array}{c} \omega \\ v \end{array}\right] \in \mathbb{R}^{6}, \\ {[\mathcal{V}]=\left[\begin{array}{cc} \omega] & v \\ 0 & 0 \end{array}\right] \in \operatorname{se}(3)} \end{gathered}$ (the pair (ω, v) can be a twist \mathcal{V} or a "unit" screw axis \mathcal{S}, depending on the context)
$\dot{R} R^{-1}=\left[\omega_{s}\right], \quad R^{-1} \dot{R}=\left[\omega_{b}\right]$	$\dot{T} T^{-1}=\left[\mathcal{V}_{s}\right], \quad T^{-1} \dot{T}=\left[\mathcal{V}_{b}\right]$
	$\begin{gathered} \hline\left[\operatorname{Ad}_{T}\right]=\left[\begin{array}{cc} R & 0 \\ {[p] R} & R \end{array}\right] \in \mathbb{R}^{6 \times 6} \\ \text { identities: }\left[\operatorname{Ad}_{T}\right]^{-1}=\left[\operatorname{Ad}_{T^{-1}}\right], \\ {\left[\operatorname{Ad}_{T_{1}}\right]\left[\operatorname{Ad}_{T_{2}}\right]=\left[\operatorname{Ad}_{T_{1} T_{2}}\right]} \end{gathered}$
change of coordinate frame: $\hat{\omega}_{a}=R_{a b} \hat{\omega}_{b}, \quad \omega_{a}=R_{a b} \omega_{b}$	change of coordinate frame: $\mathcal{S}_{a}=\left[\operatorname{Ad}_{T_{a b}}\right] \mathcal{S}_{b}, \quad \mathcal{V}_{a}=\left[\operatorname{Ad}_{T_{a b}}\right] \mathcal{V}_{b}$
\exp coords for $R \in S O(3): \hat{\omega} \theta \in \mathbb{R}^{3}$	\exp coords for $T \in S E(3): \mathcal{S} \theta \in \mathbb{R}^{6}$
$\begin{gathered} \exp :[\hat{\omega}] \theta \in \operatorname{so}(3) \rightarrow R \in S O(3) \\ R=\operatorname{Rot}(\hat{\omega}, \theta)=e^{[\hat{\omega}] \theta}= \\ I+\sin \theta[\hat{\omega}]+(1-\cos \theta)[\hat{\omega}]^{2} \end{gathered}$	$\begin{gathered} \exp :[\mathcal{S}] \theta \in \operatorname{se}(3) \rightarrow T \in S E(3) \\ T=e^{[\mathcal{S}] \theta}=\left[\begin{array}{cc} e^{[\omega] \theta} & * \\ 0 & 1 \end{array}\right] \\ \text { where } *= \\ \left(I \theta+(1-\cos \theta)[\omega]+(\theta-\sin \theta)[\omega]^{2}\right) v \end{gathered}$
$\begin{gathered} \log : R \in S O(3) \rightarrow[\hat{\omega}] \theta \in \operatorname{so}(3) \\ \text { algorithm in Section 3.2.3.3 } \end{gathered}$	$\begin{gathered} \log : T \in S E(3) \rightarrow[\mathcal{S}] \theta \in s e(3) \\ \text { algorithm in Section 3.3.3.2 } \end{gathered}$
moment change of coord frame: $m_{a}=R_{a b} m_{b}$	wrench change of coord frame: $\mathcal{F}_{a}=\left(m_{a}, f_{a}\right)=\left[\operatorname{Ad}_{T_{b a}}\right]^{\mathrm{T}} \mathcal{F}_{b}$

5 Homework : Chapter 3

- Please solve and submit Exercise 3.5, 3.6, 3.7, 3.14, 3.17, 3.18, 3.21, 3.22, 3.23, 3.24, 3.25, 3.39, till April 9 (upload it as a pdf form or email me)
- If you let me know what the numbers you cannot solve until April 7, I will include the solving process in the next lecture.

