3.3 Exponential Coordinate Representation of Rigid-Body Motions

Exponential Coordinates of Rigid-Body Motions

- Chasles-Mozzi theorem: every rigid-body displacement can be expressed as a displacement along a fixed screw axis S in space.
- (In the previous lecture) The exponential coordinates $\hat{\omega}\theta$ for rotation:

matrix exponential : $[\hat{\omega}]\theta \in so(3) \rightarrow R = e^{[\hat{\omega}]\theta} \in SO(3)$ matrix logarithm : $R = e^{[\hat{\omega}]\theta} \in SO(3) \rightarrow [\hat{\omega}]\theta \in so(3)$

- By analogy to the exponential coordinates $\hat{\omega}\theta$ for rotations R, let us define the six-dimensional exponential coordinates of a homogeneous transformation T as $S\theta \in \Re^6$, where θ is the distance that must be traveled along the screw axis to take a frame from the origin I to T.
 - If the pitch of the screw axis $S = (\omega, v)$ is finite then $\|\omega\| = 1$ and θ corresponds to the angle of rotation about the screw axis.
 - If the pitch of the screw is infinite then $\omega = 0$ and ||v|| = 1 and θ corresponds to the linear distance traveled along the screw axis.
- Also by analogy to the rotation case, let us define a matrix exponential (exp) and matrix logarithm (log):

matrix exponential : $[S]\theta \in se(3) \rightarrow T = e^{[S]\theta} \in SE(3)$ matrix logarithm : $T = e^{[S]\theta} \in SE(3) \rightarrow [S]\theta \in se(3)$ • Expanding the matrix exponential in series form leads to

$$e^{[\mathcal{S}]\theta} = I_{4\times4} + [\mathcal{S}]\theta + [\mathcal{S}]^2 \frac{\theta^2}{2!} + [\mathcal{S}]^3 \frac{\theta^3}{3!} + \dots = \begin{bmatrix} I_{3\times3} + [\omega]\theta + [\omega]^2 \frac{\theta^2}{2!} + [\omega]^3 \frac{\theta^3}{3!} + \dots & v\theta + [\omega]v \frac{\theta^2}{2!} + [\omega]^2 v \frac{\theta^3}{3!} + \dots \\ 0_{3\times1} & 1 \end{bmatrix}$$
$$= \begin{bmatrix} e^{[\omega]\theta} & G(\theta)v \\ 0_{3\times1} & 1 \end{bmatrix}$$

where

$$\begin{split} [\mathcal{S}]^2 &= \begin{bmatrix} [\omega] & v \\ 0 & 0 \end{bmatrix} \begin{bmatrix} [\omega] & v \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} [\omega]^2 & [\omega] v \\ 0 & 0 \end{bmatrix} & [\mathcal{S}]^3 = \begin{bmatrix} [\omega]^2 & [\omega] v \\ 0 & 0 \end{bmatrix} \begin{bmatrix} [\omega] & v \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} [\omega]^3 & [\omega]^2 v \\ 0 & 0 \end{bmatrix} \\ G(\theta) &= I\theta + [\omega] \frac{\theta^2}{2!} + [\omega]^2 \frac{\theta^3}{3!} + [\omega]^3 \frac{\theta^4}{4!} + [\omega]^4 \frac{\theta^5}{5!} + \cdots \\ &= I\theta + [\omega] \frac{\theta^2}{2!} + [\omega]^2 \frac{\theta^3}{3!} - [\omega] \frac{\theta^4}{4!} - [\omega]^2 \frac{\theta^5}{5!} + \cdots \\ &= I\theta + \left(\frac{\theta^2}{2!} - \frac{\theta^4}{4!} + \cdots\right) [\omega] + \left(\frac{\theta^3}{3!} - \frac{\theta^5}{5!} + \cdots\right) [\omega]^2 \\ &= I\theta + (1 - \cos\theta)[\omega] + (\theta - \sin\theta)[\omega]^2 \end{split}$$

Proposition 3.13. Let $S = (\omega, v)$ be a screw axis. If $\|\omega\| = 1$ or if $\omega = 0$ and $\|v\| = 1$, then, for any distance $\theta \in \Re$ traveled along the axis, respectively,

$$e^{[\mathcal{S}]\theta} = \begin{bmatrix} e^{[\omega]\theta} & (I\theta + (1 - \cos\theta)[\omega] + (\theta - \sin\theta)[\omega]^2)v \\ 0_{3\times 1} & 1 \end{bmatrix} \qquad e^{[\mathcal{S}]\theta} = \begin{bmatrix} I & v\theta \\ 0_{3\times 1} & 1 \end{bmatrix}$$

Matrix Logarithm of Rigid-Body Motions

• On the contrary, for given an arbitrary $T = (R, p) \in SE(3)$, one can always find a screw axis $S = (\omega, v)$ and a scalar θ such that

$$e^{[\mathcal{S}]\theta} = \begin{bmatrix} R & p \\ 0_{3\times 1} & 1 \end{bmatrix} \in SE(3) \qquad \rightarrow \qquad [\mathcal{S}]\theta = \begin{bmatrix} [\omega]\theta & v\theta \\ 0_{3\times 1} & 0 \end{bmatrix} \in se(3)$$

where $[S]\theta$ is the matrix logarithm of T = (R, p).

Algorithm 3.2. Given (R, p) written as $T \in SE(3)$, find a $\theta \in [0, \pi]$ and a screw axis $S = (\omega, v) \in \Re^6$ (where at least one of $\|\omega\| = 1$ and $\|v\|$ is unity) such that $e^{[S]\theta} = T$. The vector $S\theta \in \Re^6$ comprises the exponential coordinates for T and the matrix $[S]\theta \in se(3)$ is the matrix logarithm of T.

• If
$$R = I$$
 then set $\omega = 0$, $v = \frac{p}{\|p\|}$ and $\theta = \|p\|$

• Otherwise, use the matrix logarithm on SO(3) to determine ω (written as in the SO(3) algorithm) and θ for R. Then v is calculated as

$$v = G(\theta)^{-1}p$$

where

$$G(\theta)^{-1} = \frac{1}{\theta}I - \frac{1}{2}[\omega] + \left(\frac{1}{\theta} - \frac{1}{2}\cot\frac{\theta}{2}\right)[\omega]^2$$

Figure 3.20: Two frames in a plane.

Example 3.4. Assume the he rigid-body motion is confined to the $\hat{x}_s - \hat{y}_s$ plane. The initial frame $\{b\}$ and final frame $\{c\}$ can be represented by the SE(3) matrices

$$T_{sb} = \begin{bmatrix} \cos 30^{\circ} & -\sin 30^{\circ} & 0 & 1 \\ \sin 30^{\circ} & \cos 30^{\circ} & 0 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad T_{sc} = \begin{bmatrix} \cos 60^{\circ} & -\sin 60^{\circ} & 0 & 2 \\ \sin 60^{\circ} & \cos 60^{\circ} & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 \bullet Assume the exponential coordinates are expressed in the fixed frame $\{s\},$ then we have

$$e^{[\mathcal{S}]\theta}T_{sb} = T_{sc} \longrightarrow e^{[\mathcal{S}]\theta} = T_{sc}T_{sb}^{-1} = \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 2.134\\ \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 & -1.232\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} = T(R, p)$$

• Find θ from the rotation matrix

$$\theta = \cos^{-1}\left(\frac{tr(R) - 1}{2}\right) = \cos^{-1}\frac{\sqrt{3}}{2} = 30^{\circ} = 0.5236 \ rad$$

• Find $\hat{\omega}$ from the rotation matrix

$$[\hat{\omega}] = \frac{1}{2\sin\theta}(R - R^T) = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -\hat{\omega}_3 & \hat{\omega}_2 \\ \hat{\omega}_3 & 0 & -\hat{\omega}_1 \\ -\hat{\omega}_2 & \hat{\omega}_1 & 0 \end{bmatrix} \to \hat{\omega} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

• Find v from $v = G(\theta)^{-1}p$

$$v = G(\theta)^{-1}p = \left[\frac{1}{\theta}I - \frac{1}{2}[\omega] + \left(\frac{1}{\theta} - \frac{1}{2}\cot\frac{\theta}{2}\right)[\omega]^2\right]p$$
$$= \left[1.9096 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - 0.5 \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + 0.0439 \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}\right] \begin{bmatrix} 2.134 \\ -1.232 \\ 0 \end{bmatrix}$$

$$v = \begin{bmatrix} 1.8658 & 0.5 & 0 \\ -0.5 & 1.8658 & 0 \\ 0 & 0 & 1.9096 \end{bmatrix} \begin{bmatrix} 2.134 \\ -1.232 \\ 0 \end{bmatrix} = \begin{bmatrix} 3.37 \\ -3.37 \\ 0 \end{bmatrix}$$

• Find the screw axis S, and the exponential coordinates (normalized twist)

$$\mathcal{S} = \begin{bmatrix} \omega \\ v \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 3.37 \\ -3.37 \\ 0 \end{bmatrix} \qquad \qquad \mathcal{S}\theta = \begin{bmatrix} \omega \\ v \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0.5236 \\ 1.7622 \\ -1.7622 \\ 0 \end{bmatrix}$$

- Alternatively,
 - we can observe that the displacement is not a pure translation T_{sb} and T_{sc} have rotation components that differ by an angle of $\theta = 30^{\circ}$ and $\omega_z = 1$.
 - we can also graphically determine the point $q = (q_x, q_y)$ in the $\hat{x}_s \hat{y}_s$ plane through which the screw axis passes; for our example this point is given by q = (3.37, 3.37).

Figure 3.21: Relation between wrench representations \mathcal{F}_a and \mathcal{F}_b .

4 Wrenches

- Consider a linear force f acting on a rigid body at a point r.
- Defining a reference frame {a}, the point r can be represented as $r_a \in \Re^3$ and the force f can be represented as $f_a \in \Re^3$.
- This force creates a torque or moment $m_a \in \Re^3$ in the $\{a\}$ frame:

$$m_a = r_a \times f_a$$

• Just as with twists, we can merge the moment and force into a single six-dimensional spatial force, or wrench, expressed in the {a} frame,

$$\mathcal{F}_a = egin{bmatrix} m_a \ f_a \end{bmatrix} \in \Re^6$$

• A wrench with a zero linear component is called a pure moment.

Figure 3.21: Relation between wrench representations \mathcal{F}_a and \mathcal{F}_b .

- A wrench and twist in the $\{a\}$ frame can be represented in another frame $\{b\}$
- Since the power is coordinate-independent quantity, we have

$$\mathcal{V}_b^T \mathcal{F}_b = \mathcal{V}_a^T \mathcal{F}_a = ([Ad_{T_{ab}}]\mathcal{V}_b)^T \mathcal{F}_a = \mathcal{V}_b^T [Ad_{T_{ab}}]^T \mathcal{F}_a$$

Proposition 3.14. Given a wrench F, represented in $\{a\}$ as \mathcal{F}_a and in $\{b\}$ as \mathcal{F}_b , two representations are related by

$$\mathcal{F}_b = [Ad_{T_{ab}}]^T \mathcal{F}_a = Ad_{T_{ab}}^T \mathcal{F}_a$$
$$\mathcal{F}_a = [Ad_{T_{ba}}]^T \mathcal{F}_b = Ad_{T_{ba}}^T \mathcal{F}_b$$

• Spatial wrench \mathcal{F}_s in $\{s\}$ and body wrench \mathcal{F}_b in $\{b\}$

Figure 3.22: A robot hand holding an apple subject to gravity.

Example 3.5. What is the force and torque measured by the six-axis force-torque sensor b/w the hand and the arm? (mass of apple : 0.1[kg], mass of hand : 0.5[kg], $g = 10[m/s^2]$, $L_1 = 0.1[m]$, and $L_2 = 0.15[m]$) where $\{f\}$ is attached to the force-torque sensor, $\{h\}$ to CoM of hand, $\{a\}$ to CoM of apple

• Gravitational wrench on the hand in {h} is given by

$$\mathcal{F}_h = (0, 0, 0, 0, -5N, 0)$$

• Gravitational wrench on the apple in $\{a\}$ is given by

$$\mathcal{F}_h = (0, 0, 0, 0, 0, 1N)$$

• Transformation matrices

$$T_{hf} = \begin{bmatrix} 1 & 0 & 0 & -0.1[m] \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad T_{af} = \begin{bmatrix} 1 & 0 & 0 & -0.25[m] \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• Wrench measured by the six-axis force-torque sensor is

Rotations	Rigid-Body Motions
$R \in SO(3): 3 \times 3$ matrices	$T \in SE(3): 4 \times 4$ matrices
$R^{\rm T}R=I, \det R=1$	$T = \left[egin{array}{cc} R & p \ 0 & 1 \end{array} ight], \ ext{where} \ R \in SO(3), p \in \mathbb{R}^3 \end{cases}$
$R^{-1} = R^{\mathrm{T}}$	$T^{-1} = \left[\begin{array}{cc} R^{\mathrm{T}} & -R^{\mathrm{T}}p \\ 0 & 1 \end{array} \right]$
change of coordinate frame:	change of coordinate frame:
$R_{ab}R_{bc} = R_{ac}, \ R_{ab}p_b = p_a$	$T_{ab}T_{bc} = T_{ac}, \ T_{ab}p_b = p_a$
rotating a frame $\{b\}$:	displacing a frame $\{b\}$:
$R = \operatorname{Rot}(\hat{\omega}, heta)$	$T = \left[egin{array}{cc} \operatorname{Rot}(\hat{\omega}, heta) & p \ 0 & 1 \end{array} ight]$
$R_{sb'} = RR_{sb}$:	$T_{sb'} = TT_{sb}$: rotate θ about $\hat{\omega}_s = \hat{\omega}$
rotate θ about $\hat{\omega}_s = \hat{\omega}$	(moves {b} origin), translate p in {s}
$R_{sb^{\prime\prime}}=R_{sb}R$:	$T_{sb''} = T_{sb}T$: translate p in {b},
rotate θ about $\hat{\omega}_b = \hat{\omega}$	rotate θ about $\hat{\omega}$ in new body frame
unit rotation axis is $\hat{\omega} \in \mathbb{R}^3$,	"unit" screw axis is $\mathcal{S} = \left egin{array}{c} \omega \ v \end{array} ight \in \mathbb{R}^6,$
where $\ \hat{\omega}\ = 1$	where either (i) $\ \omega\ = 1$ or
	(ii) $\omega = 0$ and $\ v\ = 1$
	for a screw axis $\{q, \hat{s}, h\}$ with finite h ,
	$\mathcal{S} = \left[egin{array}{c} \omega \ v \end{array} ight] = \left[egin{array}{c} \hat{s} \ -\hat{s} imes q + h \hat{s} \end{array} ight]$
angular velocity is $\omega = \hat{\omega} \dot{\theta}$	twist is $\mathcal{V} = \mathcal{S}\dot{\theta}$

Rotations (cont.)	Rigid-Body Motions (cont.)
for any 3-vector, e.g., $\omega \in \mathbb{R}^3$,	$ ext{ for } \mathcal{V} = \left[egin{array}{c} \omega \ v \end{array} ight] \in \mathbb{R}^6,$
$[\omega] = \begin{vmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{vmatrix} \in so(3)$	$\left[\mathcal{V} ight] = \left[egin{array}{cc} \left[\omega ight] & v \ 0 & 0 \end{array} ight] \in se(3)$
identities, $\omega, x \in \mathbb{R}^3, R \in SO(3)$:	(the pair (ω, v) can be a twist \mathcal{V}
$egin{aligned} [\omega] &= -[\omega]^{\mathrm{T}}, [\omega]x = -[x]\omega, \ [\omega][x] &= ([x][\omega])^{\mathrm{T}}, R[\omega]R^{\mathrm{T}} = [R\omega] \end{aligned}$	or a "unit" screw axis S , depending on the context)
$\dot{R}R^{-1} = [\omega_s], \ R^{-1}\dot{R} = [\omega_b]$	$\dot{T}T^{-1} = [\mathcal{V}_s], \ T^{-1}\dot{T} = [\mathcal{V}_b]$
	$\begin{bmatrix} \operatorname{Ad}_T \end{bmatrix} = \begin{bmatrix} R & 0\\ [p]R & R \end{bmatrix} \in \mathbb{R}^{6 \times 6}$ identities: $[\operatorname{Ad}_T]^{-1} = [\operatorname{Ad}_{T^{-1}}],$
	$[\mathrm{Ad}_{T_1}][\mathrm{Ad}_{T_2}] = [\mathrm{Ad}_{T_1T_2}]$
change of coordinate frame: $\hat{\omega}_a = R_{ab}\hat{\omega}_b, \ \omega_a = R_{ab}\omega_b$	change of coordinate frame: $\mathcal{S}_a = [\mathrm{Ad}_{T_{ab}}]\mathcal{S}_b, \ \mathcal{V}_a = [\mathrm{Ad}_{T_{ab}}]\mathcal{V}_b$
exp coords for $R \in SO(3)$: $\hat{\omega}\theta \in \mathbb{R}^3$	exp coords for $T \in SE(3)$: $S\theta \in \mathbb{R}^6$
$\exp: [\hat{\omega}] \theta \in so(3) o R \in SO(3)$	$\exp: [\mathcal{S}]\theta \in se(3) \to T \in SE(3)$
$R = \operatorname{Rot}(\hat{\omega}, heta) = e^{[\hat{\omega}] heta} =$	$T = e^{[\mathcal{S}] heta} = \left[egin{array}{cc} e^{[\omega] heta} & * \ 0 & 1 \end{array} ight]$
$I + \sin \theta[\hat{\omega}] + (1 - \cos \theta)[\hat{\omega}]^2$	where $* = (I\theta + (1 - \cos\theta)[\omega] + (\theta - \sin\theta)[\omega]^2)v$
$\begin{array}{l} \log: R \in SO(3) \rightarrow [\hat{\omega}] \theta \in so(3) \\ \text{algorithm in Section 3.2.3.3} \end{array}$	$\log: T \in SE(3) \to [S]\theta \in se(3)$ algorithm in Section 3.3.3.2
moment change of coord frame: $m_a = R_{ab}m_b$	wrench change of coord frame: $\mathcal{F}_a = (m_a, f_a) = [\mathrm{Ad}_{T_{ba}}]^{\mathrm{T}} \mathcal{F}_b$

5 Homework : Chapter 3

- Please solve and submit Exercise 3.5, 3.6, 3.7, 3.14, 3.17, 3.18, 3.21, 3.22, 3.23, 3.24, 3.25, 3.39, till April 9 (upload it as a pdf form or email me)
- If you let me know what the numbers you cannot solve until April 7, I will include the solving process in the next lecture.