3.2 Twists

Consider both the linear and angular velocities of a moving frame. Let

$$
T_{s b}(t)=T(t)=\left[\begin{array}{cc}
R(t) & p(t) \\
0_{3 \times 1} & 1
\end{array}\right]
$$

denote the configuration of $\{b\}$ as seen from $\{s\}$.
(In the previous lecture)
Let $R(t)=R_{s b}$ denote the orientation of the rotating frame as seen from the fixed frame. Denote by w the angular velocity of the rotating frame. Then

$$
\dot{R} R^{-1}=\dot{R}_{s b} R_{s b}^{-1}=\dot{R}_{s b} R_{b s}=\left[\omega_{s}\right] \quad R^{-1} \dot{R}=R_{s b}^{-1} \dot{R}_{s b}=R_{b s} \dot{R}_{s b}=\left[\omega_{b}\right]
$$

- $\omega_{s} \in \Re^{3}$ is the fixed-frame vector representation of w and $\left[\omega_{s}\right] \in s o(3)$ is its 3×3 matrix representation.
- $\omega_{b} \in \Re^{3}$ is the body-frame vector representation of w
- Let us first see what happens when we pre-multiply \dot{T} by T^{-1} :

$$
T^{-1} \dot{T}=\left[\begin{array}{cc}
R^{T} & -R^{T} p \\
0_{3 \times 1} & 1
\end{array}\right]\left[\begin{array}{cc}
\dot{R} & \dot{p} \\
0_{3 \times 1} & 0
\end{array}\right]=\left[\begin{array}{cc}
R^{T} \dot{R} & R^{T} \dot{p} \\
0_{3 \times 1} & 0
\end{array}\right]=\left[\begin{array}{cc}
{\left[\omega_{b}\right]} & v_{b} \\
0_{3 \times 1} & 0
\end{array}\right] \quad \leftarrow \quad T_{s b}^{-1} \dot{T}_{s b}=T_{b, p} \dot{T}_{s b} \quad \text { body-frame }
$$

$$
R^{T} \dot{R}=R^{-1} \dot{R}=R_{s b}^{-1} \dot{R}_{s b}=R_{b \phi} \dot{R}_{s b}=\left[\omega_{b}\right] \quad R^{T} \dot{p}=R^{-1} \dot{p}=R_{s b}^{-1} \dot{p}_{s}=R_{b \phi} \dot{p}_{\dot{p}}=\dot{p}_{b}=v_{b}
$$

- $T^{-1} \dot{T}$ represents the linear and angular velocities of the moving frame relative to the stationary frame $\{b\}$ currently aligned with the moving frame.
- It is reasonable to merge ω_{b} and v_{b} into a single six-dimensional velocity vector.
- Spatial velocity in the body frame, or simply the body-twist, to be

$$
\mathcal{V}_{b}=\left[\begin{array}{l}
\omega_{b} \\
v_{b}
\end{array}\right] \in \Re^{6}
$$

- It is convenient to have a matrix representation of a twist:

$$
T^{-1} \dot{T}=\left[\mathcal{V}_{b}\right]=\left[\begin{array}{cc}
{\left[\omega_{b}\right]} & v_{b} \\
0_{3 \times 1} & 0
\end{array}\right] \in \operatorname{se}(3)
$$

where $\left[\omega_{b}\right] \in s o(3)$ and $v_{b} \in \Re^{3} . s e(3)$ is called the Lie algebra of the Lie group $S E(3)$.

- $\left[\mathcal{V}_{b}\right] \in s e(3)$ represents the matrix representation of the twist \mathcal{V}_{b} associated with the rigid-body configuration $T \in S E(3)$.

Figure 3.17: Physical interpretation of v_{s}. The initial (solid line) and displaced (dashed line) configurations of a rigid body.

- Now that we have a physical interpretation for $T^{-1} \dot{T}$, let us evaluate $\dot{T} T^{-1}$:

$$
\begin{gathered}
\dot{T} T^{-1}=\left[\begin{array}{cc}
\dot{R} & \dot{p} \\
0_{3 \times 1} & 0
\end{array}\right]\left[\begin{array}{cc}
R^{T} & -R^{T} p \\
0_{3 \times 1} & 1
\end{array}\right]=\left[\begin{array}{cc}
\dot{R} R^{T} & \dot{p}-\dot{R} R^{T} p \\
0_{3 \times 1} & 0
\end{array}\right]=\left[\begin{array}{cc}
{\left[\omega_{s}\right]} & v_{s} \\
0_{3 \times 1} & 0
\end{array}\right] \leftarrow \quad \dot{T}_{s b} T_{s b}^{-1}=\dot{T}_{s b} T_{p s} \text { fixed-frame } \\
\dot{R} R^{T}=\dot{R} R^{-1}=\dot{R}_{s b} R_{s b}^{-1}=\dot{R}_{s b} R_{\not b s}=\left[\omega_{s}\right] \quad \dot{p}-\dot{R} R^{T} p=\dot{p}-\left[\omega_{s}\right] p=\dot{p}-\omega_{s} \times p=\dot{p}+\omega_{s} \times(-p)=v_{s}
\end{gathered}
$$

- The physical meaning of v_{s} can now be inferred: imagining the moving body to be infinitely large, v_{s} is the instantaneous velocity of the point on this body currently at the fixed-frame origin, expressed in the fixed frame (see Figure 3.17).
- Spatial velocity in the space frame, or simply the spatial-twist, is

$$
\mathcal{V}_{s}=\left[\begin{array}{c}
\omega_{s} \\
v_{s}
\end{array}\right] \in \Re^{6} \quad \dot{T} T^{-1}=\left[\mathcal{V}_{s}\right]=\left[\begin{array}{cc}
{\left[\omega_{s}\right]} & v_{s} \\
0_{3 \times 1} & 0
\end{array}\right] \in \operatorname{se}(3)
$$

- If we regard the moving body as being infinitely large, there is an appealing and natural symmetry between $\mathcal{V}_{s}=\left(\omega_{s}, v_{s}\right)$ and $\mathcal{V}_{b}=\left(\omega_{b}, v_{b}\right)$:
- ω_{b} is the angular velocity expressed in $\{\mathbf{b}\}$
- ω_{s} is the angular velocity expressed in $\{\mathbf{s}\}$
- v_{b} is the linear velocity of a point at the origin of $\{\mathbf{b}\}$ expressed in $\{\mathbf{b}\}$
- v_{s} is the linear velocity of a point at the origin of $\{\mathrm{s}\}$ expressed in $\{\mathrm{s}\}$
- The relationship $\mathrm{b} / \mathrm{w} \mathcal{V}_{b}$ from \mathcal{V}_{s}

$$
\begin{aligned}
& {\left[\mathcal{V}_{b}\right]=T^{-1} \dot{T} \quad \leftarrow \quad \dot{T} T^{-1}=\left[\mathcal{V}_{s}\right]} \\
& =T^{-1}\left[\mathcal{V}_{s}\right] T=T_{b,}\left[\mathcal{V}_{\phi}\right] T_{\phi b} \\
& {\left[\mathcal{V}_{s}\right]=\dot{T} T^{-1} \quad \leftarrow \quad T^{-1} \dot{T}=\left[\mathcal{V}_{b}\right]} \\
& =T\left[\mathcal{V}_{b}\right] T^{-1}=T_{s b}\left[\mathcal{V}_{b}\right] T_{p s}
\end{aligned}
$$

- Consider $\left[\mathcal{V}_{s}\right]=T\left[\mathcal{V}_{b}\right] T^{-1}$

$$
\left[\mathcal{V}_{s}\right]=\left[\begin{array}{cc}
R & p \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
{\left[\omega_{b}\right]} & v_{b} \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
R^{T} & -R^{T} p \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
R\left[\omega_{b}\right] R^{T} & -R\left[\omega_{b}\right] R^{T} p+R v_{b} \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
{\left[R \omega_{b}\right]} & {[p]\left(R \omega_{b}\right)+R v_{b}} \\
0 & 0
\end{array}\right]
$$

using $R[\omega] R^{T}=[R \omega]$ and $[\omega] p=-[p] \omega$, we have the relationship $\mathrm{b} / \mathrm{w} \mathcal{V}_{s}$ and \mathcal{V}_{b} :

$$
\left[\begin{array}{c}
\omega_{s} \\
v_{s}
\end{array}\right]=\left[\begin{array}{cc}
R & 0_{3 \times 3} \\
{[p] R} & R
\end{array}\right]\left[\begin{array}{c}
\omega_{b} \\
v_{b}
\end{array}\right]
$$

where the 6×6 matrix pre-multiplying \mathcal{V}_{b} is useful for changing the frame of reference for twists and wrenches.

Definition 3.6. Given $T=(R, p) \in S E(3)$, its adjoint representation $\left[A d_{T}\right]$ is

$$
\left[A d_{T}\right]=\left[\begin{array}{cc}
R & 0_{3 \times 3} \\
{[p] R} & R
\end{array}\right] \in \Re^{6 \times 6}
$$

For any $\mathcal{V} \in \Re^{6}$, the adjoint map associated with T is

$$
\begin{aligned}
\mathcal{V}^{\prime} & =\left[A d_{T}\right] \mathcal{V} & \mathcal{V}_{s} & =\left[A d_{T_{s b}}\right] \mathcal{V}_{b} \\
& =A d_{T}(\mathcal{V}) & & =A d_{T_{s \phi}}\left(\mathcal{V}_{b}\right)
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{V}_{b} & =\left[A d_{T_{b s}}\right] \mathcal{V}_{s} \\
& =A d_{T_{b \psi}}\left(\mathcal{V}_{\not p}\right)
\end{aligned}
$$

In terms of the matrix form $[\mathcal{V}] \in s e(3)$ of $\mathcal{V} \in \Re^{6}$,

$$
\left.\begin{array}{rlrl}
{\left[\mathcal{V}^{\prime}\right]=T[\mathcal{V}] T^{-1}} & {\left[\mathcal{V}_{s}\right]} & =T_{s b}\left[\mathcal{V}_{b}\right] T_{b s} & \left.[] \mathcal{V}_{b}\right]
\end{array}\right)=T_{b s}\left[\mathcal{V}_{s}\right] T_{s b},
$$

Proposition 3.12. Let $T_{1}, T_{2} \in S E(3)$ and $\mathcal{V}=(\omega, v)$. Then

$$
\begin{aligned}
{\left[A d_{T_{1}}\right]\left[A d_{T_{2}}\right] \mathcal{V} } & =\left[A d_{T_{1} T_{2}}\right] \mathcal{V} \\
A d_{T_{1}}\left(A d_{T_{2}}(\mathcal{V})\right) & =A d_{T_{1} T_{2}}(\mathcal{V})
\end{aligned}
$$

Also, for any $T \in S E(3)$ the following holds:

$$
\begin{aligned}
{\left[A d_{T}\right]^{-1} } & =\left[A d_{T^{-1}}\right] \\
{\left[\begin{array}{cc}
R & 0_{3 \times 3} \\
{[p] R} & R
\end{array}\right]^{-1} } & =\left[\begin{array}{cc}
R^{T} & 0_{3 \times 3} \\
-R^{T}[p] & R^{T}
\end{array}\right]
\end{aligned}
$$

when $T=(R, p)$.
The second property follows from the first on choosing $T_{1}=T^{-1}$ and $T_{2}=T$, so that

$$
A d_{T^{-1}}\left(A d_{T}(\mathcal{V})\right)=A d_{T^{-1} T}(\mathcal{V})=A d_{I}(\mathcal{V})=\mathcal{V}
$$

Again analogously to the case of angular velocities, it is important to realize that, for a given twist, its fixed-frame representation \mathcal{V}_{s} does not depend on the choice of the body frame $\{b\}$, and its body-frame representation \mathcal{V}_{b} does not depend on the choice of the fixed frame $\{\mathrm{s}\}$.

For Summary of Results on Twists, please read Proposition 3.22 in the textbook.

Figure 3.18: The twist corresponding to the instantaneous motion of the chassis of
Figure 3.18: The twist corresponding to the instantaneous motion of the chassis of
a three-wheeled vehicle can be visualized as an angular velocity w about the point r .

Example 3.3. Consider a top view of a car, with a single steerable front wheel, driving on a plane. The angle of the front wheel of the car causes the car's motion to be a pure angular velocity $\mathrm{w}=2 \mathrm{rad} / \mathrm{s}$ about an axis out of the page at the point r in the plane. Inspecting the figure, we can write r as $r_{s}=(2,-1,0)$ or $r_{b}=(2,-1.4,0), \mathrm{w}$ as $\omega_{s}=(0,0,2)$ or $\omega_{b}=(0,0,-2)$, and $T_{s b}$ as

$$
T_{s b}=\left[\begin{array}{cc}
R_{s b} & p_{s b} \\
0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
-1 & 0 & 0 & 4 \\
0 & 1 & 0 & 0.4 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

From the figure and simple geometry, we get $v_{s}=\omega_{s} \times\left(-r_{s}\right)=r_{s} \times \omega_{s}=\left[r_{s}\right] \omega_{s}=(-2,-4,0), v_{b}=$ $\omega_{b} \times\left(-r_{b}\right)=r_{b} \times \omega_{b}=\left[r_{b}\right] \omega_{b}=(2.8,4,0)$, and thus obtain the twists \mathcal{V}_{s} and \mathcal{V}_{b} :

$$
\mathcal{V}_{s}=\left[\begin{array}{c}
\omega_{s} \\
v_{s}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
2 \\
-2 \\
-4 \\
0
\end{array}\right] \quad \mathcal{V}_{b}=\left[\begin{array}{c}
\omega_{b} \\
v_{b}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
-2 \\
2.8 \\
4 \\
0
\end{array}\right] \quad \mathcal{V}_{s}=\left[A d_{T_{s b}}\right] \mathcal{V}_{b}=\left[\begin{array}{cccccc}
-1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & -0.4 & -1 & 0 & 0 \\
0 & 0 & 4 & 0 & 1 & 0 \\
0.4 & 4 & 0 & 0 & 0 & -1
\end{array}\right] \mathcal{V}_{b}
$$

Figure 3.19: A screw axis \mathcal{S} represented by a point q, a unit direction \hat{s}, and a pitch
h.

The Screw Interpretation of a Twist

- An angular velocity ω can be viewed as $\hat{\omega} \dot{\theta}$, where $\hat{\omega}$ is the unit rotation axis and $\dot{\theta}$ is the rate of rotation about that axis.
- A twist \mathcal{V} can be interpreted in terms of a screw axis \mathcal{S} and a velocity $\dot{\theta}$ about the screw axis.
- A screw axis represents the familiar motion of a screw: rotating about the axis while also translating along the axis. One representation of a screw axis \mathcal{S} is the collection $\{q, \hat{s}, h\}$, where
- $q \in \Re^{3}$ is any point on the axis,
- \hat{s} is a unit vector in the direction of the axis, and
- h is the screw pitch, which defines the ratio of the linear velocity along the screw axis to the angular velocity $\dot{\theta}$ about the screw axis.
- Using the geometry, we can write the twist $\mathcal{V}=(\omega, v)$ corresponding to an angular velocity $\dot{\theta}$ about \mathcal{S} (represented by $\{q, \hat{s}, h\}$) as

$$
\mathcal{V}=\left[\begin{array}{l}
\omega \\
v
\end{array}\right]=\left[\begin{array}{c}
\omega \\
\omega \times(-q)+h \omega
\end{array}\right]=\left[\begin{array}{c}
\hat{s} \dot{\theta} \\
\hat{s} \dot{\theta} \times(-q)+h \hat{s} \dot{\theta}
\end{array}\right]=\left[\begin{array}{c}
\hat{s} \\
\hat{s} \times(-q)+h \hat{s}
\end{array}\right] \dot{\theta}=\mathcal{S} \dot{\theta}
$$

- Instead of representing the screw axis \mathcal{S} using the cumbersome collection $\{q, \hat{s}, h\}$, let us define the screw axis \mathcal{S} using a normalized version of any twist $\mathcal{V}=(\omega, v)$ corresponding to motion along the screw:
- If $\omega \neq 0$ then the screw axis \mathcal{S} is simply \mathcal{V} normalized by the length of the angular velocity vector ω. The angular velocity about the screw axis is $\dot{\theta}=\|\omega\|$, such that $\mathcal{S} \dot{\theta}=\mathcal{V}$

$$
\mathcal{S}=\frac{\mathcal{V}}{\|\omega\|}=\left(\frac{\omega}{\|\omega\|}, \frac{v}{\|\omega\|}\right)
$$

- If $\omega=0$ then the screw axis \mathcal{S} is simply \mathcal{V} normalized by the length of the linear velocity vector. The linear velocity along the screw axis is $\dot{\theta}=\|v\|$, such that $\mathcal{S} \dot{\theta}=\mathcal{V}$

$$
\mathcal{S}=\frac{\mathcal{V}}{\|v\|}=\left(0, \frac{v}{\|v\|}\right)
$$

- This leads to the following definition of a unit (normalized) screw axis (Read Definition 3.24 in the textbook)
- Since a screw axis represented as \mathcal{S}_{a} in a frame $\{\mathrm{a}\}$ is related to the representation \mathcal{S}_{b} in a frame \{b\} by

$$
\mathcal{S}_{a}=\left[A d_{T_{a b}}\right] \mathcal{S}_{b} \quad \mathcal{S}_{b}=\left[A d_{T_{b a}}\right] \mathcal{S}_{a}
$$

