(Question on Chapter 2) Determine DoF of the following spatial parallel mechanism?

(d)

3 Rigid-Body Motions and Twists

- Representations for rigid-body configurations and velocities are derived, similary to rotations and angular velocities.
- Homogeneous transformation matrix $T \in \Re^{4 \times 4}$ is analogous to the rotation matrix $R \in \Re^{3 \times 3}$
- Screw axis $\mathcal{S} \in \Re^{6}$ is analogous to a rotation axis $\hat{\omega} \in \Re^{3}$
- Twist $\mathcal{V}=\mathcal{S} \dot{\theta} \in \Re^{6}$ is analogous to an angular velocity $\hat{\omega} \dot{\theta} \in \Re^{3}$
- Exponential coordinates $\mathcal{S} \theta \in \Re^{6}$ for rigid-body motions are analogous to exponential coordinates $\hat{\omega} \theta \in \Re^{3}$ for rotations.

3.1 Homogeneous Transformation Matrices

Consider representations for the combined orientation and position of a rigid body.

- A natural choice would be to use a rotation matrix $R \in S O(3)$ to represent the orientation of the body frame $\{\mathbf{b}\}$ in the fixed frame $\{\mathbf{s}\}$ and a vector $p \in \Re^{3}$ to represent the origin of $\{\mathbf{b}\}$ in $\{\mathbf{s}\}$.
- Rather than identifying R and p separately, we package them into a single matrix T as follows.
- Single matrix T will sometimes be denoted (R, p).

Definition 3.4. The special Euclidean group SE(3), also known as the group of rigid-body motions or homogeneous transformation matrices in \Re^{3}, is the set of all 4×4 real matrices T of the form

$$
T=\left[\begin{array}{cc}
R & p \\
0_{3 \times 1} & 1
\end{array}\right]=\left[\begin{array}{cccc}
r_{11} & r_{12} & r_{13} & p_{1} \\
r_{21} & r_{22} & r_{23} & p_{2} \\
r_{31} & r_{32} & r_{33} & p_{3} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

where $R \in S O(3)$ and $p \in \Re^{3}$ is a column vector.
Definition 3.5. The special Euclidean group $S E(2)$ is in the set of all 3×3 real matrices T of the form

$$
T=\left[\begin{array}{cc}
R & p \\
0_{2 \times 1} & 1
\end{array}\right]=\left[\begin{array}{ccc}
r_{11} & r_{12} & p_{1} \\
r_{21} & r_{22} & p_{2} \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & p_{1} \\
\sin \theta & \cos \theta & p_{2} \\
0 & 0 & 1
\end{array}\right]
$$

where $R \in S O(2), p \in \Re^{2}$ is a column vector, and $\theta \in[0,2 \pi)$.

Properties of Transformation Matrices

The following three properties confirm that $S E(3)$ is a group.
Proposition 3.8. The inverse of a transformation matrix $T \in S E(3)$ is also a transformation matrix, and it has the following form:

$$
T^{-1}=\left[\begin{array}{cc}
R & p \\
0_{3 \times 1} & 1
\end{array}\right]^{-1}=\left[\begin{array}{cc}
R^{T} & -R^{T} p \\
0_{3 \times 1} & 1
\end{array}\right]
$$

Proposition 3.9. The product of two transformation matrices is also a transformation matrix.
Proposition 3.10. The multiplication of transformation matrices is associative, so that $\left(T_{1} T_{2}\right) T_{3}=T_{1}\left(T_{2} T_{3}\right)$, but generally not commutative: $T_{1} T_{2} \neq T_{2} T_{1}$.

If ' 1 ' is appended to $x \in \Re^{3}$, making it a four-dimensional vector, the following computation can be performed as a single matrix multiplication:

$$
T\left[\begin{array}{l}
x \\
1
\end{array}\right]=\left[\begin{array}{ll}
R & p \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
1
\end{array}\right]=\left[\begin{array}{c}
R x+p \\
1
\end{array}\right]
$$

where the vector $\left[x^{T}, 1\right]^{T}$ is the representation of x in "homogeneous coordinates", and accordingly $T \in$ $S E(3)$ is called a homogenous transformation. When, by an abuse of notation, we write $T x$, we mean $R x+p$.

Proposition 3.11. Given $T=(R, p) \in S E(3)$ and $x, y \in \Re^{3}$, the following hold:

1. $\|T x-T y\|=\|x-y\|$, where $\|x\|=\sqrt{x^{T} x}$.
2. $\langle T x-T z, T y-T z\rangle=\langle x-z, y-z\rangle$, where $\langle x, y\rangle=x^{T} y$.

- T is regarded as a transformation on points in \Re^{3}
- T transforms a point x to $T x$.
- T preserves distances, while T preserves angles.
- If $x, y, z \in \Re^{3}$ represent the three vertices of a triangle, then the triangle formed by the transformed vertices $\left\{T_{x}, T_{y}, T_{z}\right\}$ has the same set of lengths and angles as those of the triangle $\{x, y, z\}$ (the two triangles are said to be isometric).
- Taking $\{x, y, z\}$ to be the points on a rigid body, $\left\{T_{x}, T_{y}, T_{z}\right\}$ represents a displaced version of the rigid body.
- $S E(3)$ can be identified with rigid-body motions.

Uses of Transformation Matrices

As was the case for rotation matrices, there are three major uses for a transformation matrix T :

1. to represent the configuration (position and orientation) of a rigid body. (representation)
2. to change the reference frame in which a vector or frame is represented. (operator)
3. to displace a vector or frame. (operator)

Figure 3.14: Three reference frames in space, and a point v that can be represented
in $\{\mathrm{b}\}$ as $v_{b}=(0,0,1.5)$.

Representing a configuration

Let us consider the fixed frame $\{\mathrm{s}\}$ is coincident with $\{\mathrm{a}\}$ and the frames $\{\mathrm{a}\},\{\mathrm{b}\}$, and $\{\mathrm{c}\}$, represented by $T_{s a}=\left(R_{s a}, p_{s a}\right), T_{s b}=\left(R_{s b}, p_{s b}\right)$ and $T_{s c}=\left(R_{s c}, p_{s c}\right)$, respectively, and the locations of the origin of each frame relative to $\{\mathrm{s}\}$ can be written

$$
R_{s a}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad p_{s a}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \quad R_{s b}=\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & -1 & 0 \\
1 & 0 & 0
\end{array}\right] \quad p_{s b}=\left[\begin{array}{c}
0 \\
-2 \\
0
\end{array}\right] \quad R_{s c}=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \quad p_{s c}=\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]
$$

Any frame can be expressed relative to any other frame, for example, $T_{b c}=\left(R_{b c}, p_{b c}\right)$ represents $\{\mathrm{b}\}$ relative to $\{c\}$

$$
R_{b c}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & -1 \\
-1 & 0 & 0
\end{array}\right] \quad p_{b c}=\left[\begin{array}{c}
0 \\
-3 \\
-1
\end{array}\right]
$$

It can also be shown using previous Proposition that $T_{c b}=T_{b c}^{-1}$ for any two frames $\{\mathbf{b}\}$ and $\{\mathbf{c}\}$.

Changing the reference frame of a vector or a frame

By a subscript cancellation rule analogous to that for rotations, for any three reference frames $\{a\}$, $\{\mathrm{b}\}$, and $\{\mathrm{c}\}$, and any vector v expressed in $\{\mathrm{b}\}$ as v_{b},

$$
\begin{aligned}
T_{a b} T_{b c} & =T_{a b} T_{b c}=T_{a c} . \\
T_{a b} v_{b} & =T_{a b} v_{b}=v_{a}
\end{aligned}
$$

where v_{a} is the vector v expressed in $\{\mathbf{a}\}$.

Displacing (rotating and translating) a vector or a frame

- A transformation matrix T, viewed as the pair $(R, p)=(\operatorname{Rot}(\hat{\omega}, \theta), p)$, can act on a frame $T_{s b}$ by rotating it by θ about an axis $\hat{\omega}$ and translating it by p.
- Let us extend the 3×3 rotation operator $R=\operatorname{Rot}(\hat{\omega}, \theta)$ to a 4×4 transformations matrices that rotates without translating and translates without rotating, respectively

$$
\operatorname{Rotat}(\hat{\omega}, \theta)=\left[\begin{array}{cc}
R & 0_{1 \times 3} \\
0_{3 \times 1} & 1
\end{array}\right] \quad \operatorname{Trans}(p)=\left[\begin{array}{cccc}
1 & 0 & 0 & p_{x} \\
0 & 1 & 0 & p_{y} \\
0 & 0 & 1 & p_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- The fixed-frame transformation (corresponding to pre-multiplication by $T(R(\hat{\omega}, \theta), p)$) can be interpreted as first rotating the $\{\mathrm{b}\}$ frame by θ about an axis $\hat{\omega}$ in the $\{\mathrm{s}\}$, then translating it by p in the $\{\mathrm{s}\}$

$$
\begin{aligned}
T_{s b^{\prime}} & =T T_{s b}=\operatorname{Transl}(p) \operatorname{Rotat}(\hat{\omega}, \theta) T_{s b} \quad \text { fixed frame } \\
& =\left[\begin{array}{ll}
R & p \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
R_{s b} & p_{s b} \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
R R_{s b} & R p_{s b}+p \\
0 & 1
\end{array}\right]
\end{aligned}
$$

- The body-frame transformation (corresponding to post-multiplication by $T(R(\hat{\omega}, \theta), p)$) can be interpreted as first translating the $\{b\}$ frame by p considered to be in the $\{b\}$ frame, then rotating about $\hat{\omega}$ in the the new body frame.

$$
\begin{aligned}
T_{s b^{\prime \prime}} & =T_{s b} T=T_{s b} \operatorname{Transl}(p) \operatorname{Rotat}(\hat{\omega}, \theta) \quad \text { body frame } \\
& =\left[\begin{array}{cc}
R_{s b} & p_{s b} \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
R & p \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
R_{s b} R & R_{s b} p+p_{s b} \\
0 & 1
\end{array}\right]
\end{aligned}
$$

- (In the previous lecture) Pre-multiplying by $R=\operatorname{Rot}(\hat{\omega}, \theta)$ yields a rotation about an axis $\hat{\omega}$ considered to be in the fixed frame, and post-multiplying by R yields a rotation about $\hat{\omega}$ considered as being in the body frame.

$$
\begin{aligned}
& R_{s b^{\prime}}=\text { rotate by } R \text { in }\{\mathrm{s}\} \text { frame }\left(R_{s b}\right)=R R_{s b} \\
& R_{s b^{\prime \prime}}=\text { rotate by } R \text { in }\{\mathrm{b}\} \text { frame }\left(R_{s b}\right)=R_{s b} R
\end{aligned}
$$

Figure 3.15: Fixed-frame and body-frame transformations corresponding to $\hat{\omega}=$ $(0,0,1), \theta=90^{\circ}$, and $p=(0,2,0)$. (Left) The frame $\{\mathrm{b}\}$ is rotated by 90° about $\hat{\mathrm{z}}_{\mathrm{s}}$ and then translated by two units in $\hat{\mathrm{y}}_{\mathrm{s}}$, resulting in the new frame $\left\{\mathrm{b}^{\prime}\right\}$. (Right) The frame $\{\mathrm{b}\}$ is translated by two units in $\hat{\mathrm{y}}_{\mathrm{b}}$ and then rotated by 90° about its $\hat{\mathrm{z}}$ axis, resulting in the new frame $\left\{b^{\prime \prime}\right\}$.

$$
T=T(\operatorname{Rot}(\hat{\omega}, \theta), p)=\operatorname{Transl}(p) \operatorname{Rotat}(\hat{\omega}, \theta)=\left[\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 2 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad T_{s b}=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & -1 & 0 & -2 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

New frame $\{\mathrm{b}\}$ achieved by a fixed-frame transformation $T T_{s b}$ and the new frame $\{\mathrm{b} "\}$ achieved by a body-frame transformation $T_{s b} T$ are given by
$T T_{s b}=\operatorname{Transl}(p) \operatorname{Rotat}(\hat{\omega}, \theta) T_{s b}=T_{s b^{\prime}}=\left[\begin{array}{cccc}0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 2 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \quad T_{s b} T=T_{s b} \operatorname{Transl}(p) \operatorname{Rotat}(\hat{\omega}, \theta)=T_{s b^{\prime \prime}}=\left[\begin{array}{cccc}0 & 0 & 1 & 0 \\ -1 & 0 & 0 & -4 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

Figure 3.16: Assignment of reference frames.

Example 3.2. A robot arm mounted on a wheeled mobile platform moving in a room, and a camera fixed to the ceiling. Find $T_{c e}$? (in order to calculate how to move the robot arm so as to pick up the object, the configuration of the object relative to the robot hand)

- Frame $\{b\}$ is attached to the wheeled platform
- Frame $\{c\}$ is attached to the end-effector of the robot arm
- Frame $\{d\}$ is attached to the camera.
- A fixed frame $\{a\}$ is established and the robot must pick up an object with body frame $\{e\}$
- The transformations $T_{d b}$ and $T_{d e}$ can be calculated from measurements obtained with the camera.
- The transformation $T_{b c}$ can be calculated using the arm's joint-angle measurements.
- The transformation $T_{a d}$ is assumed to be known in advance.

$$
T_{a b} T_{b c} T_{c e}=T_{a d} T_{d e} \quad \rightarrow \quad T_{c e}=\left(T_{a b} T_{b c}\right)^{-1} T_{a d} T_{d e}=\left(T_{a d} T_{d b} T_{b c}\right)^{-1} T_{a d} T_{d e}
$$

