2.2 Angular Velocities

K(t + At)

Figure 3.10: (Left) The instantaneous angular velocity vector. (Right) Calculating
X.

e Suppose that a frame with unit axes {#,y, 2} is attached to a rotating body. For given the rate of
rotation 6 and the instantaneous axis of rotation w, the angular velocity w is defined as follows:

w = wo

e Let us determine the time derivatives of these unit axes

N>
I
=
X
N>

T=wX % j& =W Xy
o Let R(t) be the rotation matrix describing the orientation of the body frame w.r.t. the fixed frame

at time ¢, and thus we have R(t) = [2,7, 2] = [r1, 72, 73] in the fixed-frame coordinates.

e At a specific time t, let w, € R* be the angular velocity w expressed in fixed-frame coordinates.
Above equations can be expressed in fixed-frame coordinates as

Fi=ws xr; for i=1,2,3 — R=ws; xR
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Skew-symmetric matrix representation

e To eliminate the cross product, let us introduce new notation |w,] as 3 x 3 skew-symmetric matrix
representation of w, € #3. Then we have

R =uws x R=|wyR
Definition 3.3. Given a vector x = [z, 19, 23]7 € R°, define

0 —T3 T2
[SC] = X3 0 —X1

—T9 X 0

The matrix [z] is a 3 x 3 skew-symmetric matrix representation of x; that is,

The set of all 3 x 3 real skew-symmetric matrices is called so(3).

Proposition 3.5. Given any w € % and R € SO(3), the following always holds:
Rw]RT = [Rw]
e With the skew-symmetric notation, we can get the following equation:

WwJR=R —  |w]=RR!

K1



e Now let w, be w expressed in body-frame coordinates. To see how to obtain w;, from w, and vice
versa, we write R explicitly as R, . By our subscript cancellation rule, w, = R,w,, we have

wp = R_blws = R 'w, = RTw;
e Let us now express this relation in skew-symmetric matrix form:
lwy) = [RTw,) = RT[wJR=R'RR"TR=R"R=R'R

Proposition 3.6. Let R(t) = Ry, denote the orientation of the rotating frame as seen from the fixed
frame. Denote by w the angular velocity of the rotating frame. Then

RR™ = [w,] R7R = [w)

e w, € N3 is the fixed-frame vector representation of w and [w,| € so(3) is its 3 x 3 matrix representa-
tion. Note that w, is independent of the choice of body frame, although it may appear to depend
on both frames from RR~'.

o w, € N3 is the body-frame vector representation of w, and w;, is independent of the choice of fixed
frame.
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2.3 Exponential Coordinate Representation of Rotation

e The exponential coordinates parametrize a rotation matrix in terms of a rotation axis (repre-
sented by a unit vector w) and an angle of rotation ¢ about that axis;

oo € 13

where it is called axis-angle representation of a rotation

e The exponential coordinate representation w6 for a rotation matrix R can be interpreted equiva-
lently as:

— the axis w and rotation angle ¢ such that, if a frame initially coincident with {s} were rotated
by 6 about w, its final orientation relative to {s} would be expressed by R.

— the angular velocity wf expressed in {s} such that, if a frame initially coincident with {s}
followed w6 for one unit of time, its final orientation would be expressed by R

— the angular velocity & expressed in {s} such that, if a frame initially coincident with {s}
followed for 6 units of time, its final orientation would be expressed by R.

e Latter two views suggest that we consider exponential coordiantes in the setting of linear differ-
ential equations.
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Essential Results from Linear Differential Equations Theory

e Let us begin with the simple scalar linear differential equation using the initial condition z; =
z(0) € R from time O to ¢

d d
i(t) = ax(t) — d—izax e %zadt -
T t
nellfy—elt=0) 5 mig-e o 0=

where series expansion of exponential function is

(@)? (@t

at __
e =1+ at+ 9] 3l

e Now consider the vector linear differential equation with a n-dimensional z; € R"
i(t) = Az(t) —  z(t) = eMlag

where A € %" and its matrix exponential e* € R"*" is defined as

(A | (AP

At
et =14+ At + o i

in which the convergence and existence of the matrix exponential are guaranted, but we will skip
the proofs.

e While AB # BA for arbitrary square matrices A and B, it is always true that

Aett = M A
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e How to obtain the matrix exponential as a closed-form: using the diagonalization technique A =
PDP!

A =T+ (PDP Mt + (PDPl)(PDpl)@ + (PDPl)(PDPl)(PDpl)(g—)'g SR

2!
_ 1 2 o1y (1)’ 3 o1y ()’
=1+ (PDP )t+ (PD°P )7+(PD P )?4—
Dt? (Dt} |
:P(I+Dt+( ) +( ) +"')P1
2! 3!
= pePtp!
e Since D is diagonal, i.e., D = diag(d;,ds, - - ,d,), then its matrix exponential is particularly simple
to evaluate
et 0 0
0 ekt ...
eDt — . € c §Rn><n
0 0 et

e Please refer to Proposition 3.10 in the textbook!
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Exponential Coordinates of Rotations

p(9)

Figure 3.11: The vector p(0) is rotated by an angle 6 about the axis &, to p(6).

e Suppose that a three-dimensional p(0) € R? is rotated by 6 about & to p(f); where we assume that
all quantities are expressed in fixed-frame coordinates.

e This rotation can be achieved by imagining that p(0) rotates at a constant rate of lrad/s from
time t =0 to t = 6.

e Let p(t) denote the path traced by the tip of the vector. The velocity of p(¢), denoted p, is then

given by
p=oxp=Lp —  pt)=p0) - p(6) = e“p(0)
e Since [0]® = —[@], [©]* = —[@]?, and [@]® = [&], the matrix exponential ¢“’ in series form is
.07 L0 00
[]—I+[w]9—|—[w]2 +[w] +[]4'—|-[]5'—|-
92 93 N 0>
2
= 14 [plo+ Y - B0 - RS+ @
63 6> 64
=1+ (Q—g—l— ) (W] + (5—14— ) ()2 = I + sin[&] + (1 — cos 0)[w]?



because the series expansions for sinf and cos6:

, 6 @

81n9:9—§+g—
6> o

0059:1—5_}_@_...

Proposition 3.7. (Rodrigues’ formula for rotation) Given a vector &0 € R such that 0 is any scalar
and & € R is a unit vector, the matrix exponential of [©] € so(3) is

Rot(&,0) = e = T +sin B[] + (1 — cos 8)[&]?

100 0 —@3 — (@3 4+@2) e 0103
=10 1 0| +sinf | b5 0 —d|+(1—cosh) 1@ — (@2 +@3) el
001 —@y @ 0 0103 Qo3 — (@} + @3)

cop + @%(1 — CQ) (2)1@2(1 — C@) — W3Sy (2}1@3(1 — C@) + Wy Sy
= (2)1(2)2(1 — C@) + W3Sg cop + @%(1 — CQ) (1]2(2)3(1 — CQ) — W18y

_(2)1@3<1 — Cg) — (1)289 (1)2(2)3(1 — Ca) + @189 Cop + @32)(1 — Cg)

note that &? + 0 + @2 =1, ¢y = cosf, and sy = sin 6.

e Also

R =e“PR = Rot(,0)R  orientation achived by rotating R by ¢ about the axis & in the fixed frame
R" = Rel“l0 = RRot(w,d) orientation achived by rotating R by ¢ about the axis w in the body frame
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Figure 3.12: The frame {b} is obtained by a rotation from {s} by 6; = 30° about
&1 = (0,0.866,0.5).

Example 3.1. The frame {b} in Figure 3.12 is obtained by rotation from an initial orientation aligned
with the fixed frame {s} about a unit axis w = (0,0.866,0.5) by an angle 6 = 30° = 0.524rad. Since
sp =sinf = 0.5 and ¢y = cos = 0.866, we have

Cco + @%(1 — Cg) @1@2(1 — Cg) — W3Sy @1@3(1 — 69) + (W9 Sy 0.866 —0.250 0.433
R=e" = |0100(1 —cp) + @350 co+@2(1—cp)  Gas(l —cy) —@rsg| = | 0.250  0.967 0.058
in@s(1 — cg) — sy Was(1 — cg) + s o+ @31 — cp) —0.433  0.058 0.899

Exponetial coordinates and matrix logarithm of rotation R are, respectively,

0 0 —0.262 0.453
Wl = [0.453 and (w]f = [wb] = | 0.262 0 0
0.262 —0.453 0 0

If &0 € R3 represents the exponential coordinates of a rotation matrix R, then the skew-symmetric matrix
[w]f = [wh] € N33 is the matrix logarithm of a rotation R.
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Matrix Logarithm of Rotations

e From the exponential coordinates w6,

matrix exponetial : (W] eso(3) — R=e4e50(3)

matrix logarithm : R=e“ec50(3) —  [@]feso3)

o Let us derive the matrix logarithm from R = el

11 T12 T13 cy + (2)%(1 — 69) (2)1&}2(1 — CQ) — W3Sy (2)1(2}3(1 — Ca) + W9 Sy
R = T91 T92 To3| — (;)1(2)2(1 — Cg) + @389 Co + @%(1 — CQ) @2@3(1 — C@) — @189
31 T32 T33 (:)1@3<1 — Cg) — (;JQSQ @2@3(1 — CQ) + @189 Co + 02)32)(1 — Cg)

e Subtracting the transpose from both sides leads to the following

O T2 —T921 T13 —T31 O —2(2}389 2(2)289
T ~ -
R— R = |ry — 1o 0 ro3 —1r3a| = | 2Ww3sy 0 —20W1 8¢
31 —T13 732 —T23 0 —2wasg 2189 0

e If sinf # 0, then we can get the skew-symmetric matrix form of the rotation axis &w by divding
2sinf and take the trace

0 —&3
(R—R)=|da&; 0 =&

—W?2 (,:)1 0
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e For the rotation angle # about the rotation axix w from R, let us take the trace

tT‘(R) =111+ 799 + 133 = 3¢9 + ((2)% + (,:}g —f—d)g)(l — CQ)

—1
=14+ 2cosf — 0 = cos™ <%)

note that &f + &3 + &f = 1.

e Recall that & represents the axis of rotation for the given R. Because of the sinf term in the
denominator, [w] is not well defined if ¢ is an integer multiple of .

e Let us now return to the case ¢ = kr, where k is some integer.

— When £ is an even integer, regardless of & we have rotated back to R = I so the vector @ is
undefined.

— When £ is an odd integer (corresponding to § = +x, £37,--- which in turn implies ¢r(R) =
—1), the exponential formula simplifies to

100 — (3 +@3) 0103
R=e=74+20P=1010]+2| @@ —(@2+0%) Qs
00 1 w3 Wotz  —(Wf +@3)
11 Ti12 T13 1— 2((2)% + (2132)) 2(2}1(1)2 2(2)10?)3
921 To9o2 To3| — 2(2}1(,?}2 1 — 2((2}% —+ C:)%) 2(2}2(1}3
31 T32 733 2(,:}1(2)3 2(2}2@3 1— 2((1)% + (IJ%)
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— Three diagonal terms can be manipulated as

[rii + 1
Tii:1—2(@?+@z):1—2<1—@3) — Q; = T;_

from &F +&F + @} = 1.

- Off-diagonal terms lead to the following three equations:
2(;}2(2)] = Tij = Tji

- For example, if tr(R) = —1 then 6 = 7, and the axis of rotation is described by

. i1+ 1
W =
2
- 21 A
Wy = < 2&)1(,«)2 =T
2(7“11 + 1)
T
(2)3 = 31 <— 26:}1(,:)3 =731
2(7“11 + 1)

Note that 19 = 721, T13 = T'31, and T93 = T'39 when 0 = 7.
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Algorithm 3.1. Given R € SO(3), find 0 € [0,7] and a unit rotation axis & € R3, ||0|| = 1 such that
el = R. The vector 0 € R° comprises the exponential coordinates for R and skew-symmetric matrix
[w]0 € so(3) is the matrix logarithm of R.

o If R=1, then § =0 and & is undefined

o If tr(R) = —1, then 0 = w. Set & equal to any of the following three vectors that is a feasible
solution:
13 12 L+
. 1 1 |+ 1
21 +rg) | 2(1 + o) = 21+ |
1+ rs3 732 31

Note that if & is a solution, then so is —w.

e Otherwise 0 = cos™* (%) € [0,7) and
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Figure 3.13: SO(3) as a solid ball of radius m. The exponential coordinates r = W@
may lie anywhere within the solid ball.

e Because the matrix logarithm calculates exponential coordinates wf satisfying ||wf|| < 7, we can
picture the rotation group SO(3) as a solid ball of radius =

e Given a point r € #? in this solid ball, let & = ﬁ be the unit axis in the direction from the origin
to the point r and let 6 = ||r|| be the distance from the origin to r, so that r = w#.

e For any R € SO(3) such that tr(R) # —1, there exists a unique r in the interior of the solid ball
such that eIl = R.

e In the event that tr(R) = —1, log R is given by two antipodal points on the surface of this solid
ball. That is, if there exists some r such that R = ¢l with ||r|| = 7 then R = ¢[="! also holds; both
r and —r correspond to the same rotation R.
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