2.2 Angular Velocities

Figure 3.10: (Left) The instantaneous angular velocity vector. (Right) Calculating $\dot{\hat{\mathrm{x}}}$.

- Suppose that a frame with unit axes $\{\hat{x}, \hat{y}, \hat{z}\}$ is attached to a rotating body. For given the rate of rotation $\dot{\theta}$ and the instantaneous axis of rotation $\hat{\mathrm{w}}$, the angular velocity w is defined as follows:

$$
\mathrm{w}=\hat{\mathrm{w}} \dot{\theta}
$$

- Let us determine the time derivatives of these unit axes

$$
\dot{\hat{x}}=\mathrm{w} \times \hat{x} \quad \dot{\hat{y}}=\mathrm{w} \times \hat{y} \quad \dot{\hat{z}}=\mathrm{w} \times \hat{z}
$$

- Let $R(t)$ be the rotation matrix describing the orientation of the body frame w.r.t. the fixed frame at time t, and thus we have $R(t)=[\hat{x}, \hat{y}, \hat{z}]=\left[r_{1}, r_{2}, r_{3}\right]$ in the fixed-frame coordinates.
- At a specific time t, let $\omega_{s} \in \Re^{3}$ be the angular velocity w expressed in fixed-frame coordinates. Above equations can be expressed in fixed-frame coordinates as

$$
\dot{r}_{i}=\omega_{s} \times r_{i} \quad \text { for } \quad i=1,2,3 \quad \rightarrow \quad \dot{R}=\omega_{s} \times R
$$

Skew-symmetric matrix representation

- To eliminate the cross product, let us introduce new notation $\left[\omega_{s}\right.$] as 3×3 skew-symmetric matrix representation of $\omega_{s} \in \Re^{3}$. Then we have

$$
\dot{R}=\omega_{s} \times R=\left[\omega_{s}\right] R
$$

Definition 3.3. Given a vector $x=\left[x_{1}, x_{2}, x_{3}\right]^{T} \in \Re^{3}$, define

$$
[x]=\left[\begin{array}{ccc}
0 & -x_{3} & x_{2} \\
x_{3} & 0 & -x_{1} \\
-x_{2} & x_{1} & 0
\end{array}\right]
$$

The matrix $[x]$ is a 3×3 skew-symmetric matrix representation of x; that is,

$$
[x]=-[x]^{T}
$$

The set of all 3×3 real skew-symmetric matrices is called so(3).
Proposition 3.5. Given any $\omega \in \Re^{3}$ and $R \in S O(3)$, the following always holds:

$$
R[\omega] R^{T}=[R \omega]
$$

- With the skew-symmetric notation, we can get the following equation:

$$
\left[\omega_{s}\right] R=\dot{R} \quad \rightarrow \quad\left[\omega_{s}\right]=\dot{R} R^{-1}
$$

- Now let ω_{b} be w expressed in body-frame coordinates. To see how to obtain ω_{b} from ω_{s} and vice versa, we write R explicitly as $R_{s b}$. By our subscript cancellation rule, $\omega_{s}=R_{s b} \omega_{b}$, we have

$$
\omega_{b}=R_{s b}^{-1} \omega_{s}=R^{-1} \omega_{s}=R^{T} \omega_{s}
$$

- Let us now express this relation in skew-symmetric matrix form:

$$
\left[\omega_{b}\right]=\left[R^{T} \omega_{s}\right]=R^{T}\left[\omega_{s}\right] R=R^{T} \dot{R} R^{T} R=R^{T} \dot{R}=R^{-1} \dot{R}
$$

Proposition 3.6. Let $R(t)=R_{s b}$ denote the orientation of the rotating frame as seen from the fixed frame. Denote by w the angular velocity of the rotating frame. Then

$$
\dot{R} R^{-1}=\left[\omega_{s}\right]
$$

$$
R^{-1} \dot{R}=\left[\omega_{b}\right]
$$

- $\omega_{s} \in \Re^{3}$ is the fixed-frame vector representation of w and $\left[\omega_{s}\right] \in s o(3)$ is its 3×3 matrix representation. Note that ω_{s} is independent of the choice of body frame, although it may appear to depend on both frames from $\dot{R} R^{-1}$.
- $\omega_{b} \in \Re^{3}$ is the body-frame vector representation of w , and ω_{b} is independent of the choice of fixed frame.

2.3 Exponential Coordinate Representation of Rotation

- The exponential coordinates parametrize a rotation matrix in terms of a rotation axis (represented by a unit vector $\hat{\omega}$) and an angle of rotation θ about that axis;

$$
\hat{\omega} \theta \in \Re^{3}
$$

where it is called axis-angle representation of a rotation

- The exponential coordinate representation $\hat{\omega} \theta$ for a rotation matrix R can be interpreted equivalently as:
- the axis $\hat{\omega}$ and rotation angle θ such that, if a frame initially coincident with $\{s\}$ were rotated by θ about $\hat{\omega}$, its final orientation relative to $\{\mathrm{s}\}$ would be expressed by R.
- the angular velocity $\hat{\omega} \theta$ expressed in $\{s\}$ such that, if a frame initially coincident with $\{s\}$ followed $\hat{\omega} \theta$ for one unit of time, its final orientation would be expressed by R
- the angular velocity $\hat{\omega}$ expressed in $\{s\}$ such that, if a frame initially coincident with $\{s\}$ followed for θ units of time, its final orientation would be expressed by R.
- Latter two views suggest that we consider exponential coordiantes in the setting of linear differential equations.

Essential Results from Linear Differential Equations Theory

- Let us begin with the simple scalar linear differential equation using the initial condition $x_{0}=$ $x(0) \in \Re$ from time 0 to t

$$
\begin{aligned}
\dot{x}(t)=a x(t) & \rightarrow \quad \frac{d x}{d t}=a x \quad
\end{aligned} \rightarrow \quad \frac{d x}{x}=a d t \quad \rightarrow \quad+\quad \rightarrow \quad \ln \frac{x(t)}{x(0)}=a t \quad \rightarrow \quad \therefore \quad x(t)=e^{a t} x_{0}
$$

where series expansion of exponential function is

$$
e^{a t}=1+a t+\frac{(a t)^{2}}{2!}+\frac{(a t)^{3}}{3!}+\cdots
$$

- Now consider the vector linear differential equation with a n-dimensional $x_{0} \in \Re^{n}$

$$
\dot{x}(t)=A x(t) \quad \rightarrow \quad x(t)=e^{A t} x_{0}
$$

where $A \in \Re^{n \times n}$ and its matrix exponential $e^{A t} \in \Re^{n \times n}$ is defined as

$$
e^{A t}=I+A t+\frac{(A t)^{2}}{2!}+\frac{(A t)^{3}}{3!}+\cdots
$$

in which the convergence and existence of the matrix exponential are guaranted, but we will skip the proofs.

- While $A B \neq B A$ for arbitrary square matrices A and B, it is always true that

$$
A e^{A t}=e^{A t} A
$$

- How to obtain the matrix exponential as a closed-form: using the diagonalization technique $A=$ $P D P^{-1}$

$$
\begin{aligned}
e^{A t} & =I+\left(P D P^{-1}\right) t+\left(P D P^{-1}\right)\left(P D P^{-1}\right) \frac{(t)^{2}}{2!}+\left(P D P^{-1}\right)\left(P D P^{-1}\right)\left(P D P^{-1}\right) \frac{(t)^{3}}{3!}+\cdots \\
& =I+\left(P D P^{-1}\right) t+\left(P D^{2} P^{-1}\right) \frac{(t)^{2}}{2!}+\left(P D^{3} P^{-1}\right) \frac{(t)^{3}}{3!}+\cdots \\
& =P\left(I+D t+\frac{(D t)^{2}}{2!}+\frac{(D t)^{3}}{3!}+\cdots\right) P^{-1} \\
& =P e^{D t} P^{-1}
\end{aligned}
$$

- Since D is diagonal, i.e., $D=\operatorname{diag}\left(d_{1}, d_{2}, \cdots, d_{n}\right)$, then its matrix exponential is particularly simple to evaluate

$$
e^{D t}=\left[\begin{array}{cccc}
e^{d_{1} t} & 0 & \cdots & 0 \\
0 & e^{d_{2} t} & \cdots & 0 \\
\vdots & & & \\
0 & 0 & \cdots & e^{d_{n} t}
\end{array}\right] \in \Re^{n \times n}
$$

- Please refer to Proposition 3.10 in the textbook!

Exponential Coordinates of Rotations

Figure 3.11: The vector $p(0)$ is rotated by an angle θ about the axis $\hat{\omega}$, to $p(\theta)$.

- Suppose that a three-dimensional $p(0) \in \Re^{3}$ is rotated by θ about $\hat{\omega}$ to $p(\theta)$; where we assume that all quantities are expressed in fixed-frame coordinates.
- This rotation can be achieved by imagining that $p(0)$ rotates at a constant rate of $1 \mathrm{rad} / \mathrm{s}$ from time $t=0$ to $t=\theta$.
- Let $p(t)$ denote the path traced by the tip of the vector. The velocity of $p(t)$, denoted \dot{p}, is then given by

$$
\dot{p}=\hat{\omega} \times p=[\hat{\omega}] p \quad \rightarrow \quad p(t)=e^{[\hat{\omega}] t} p(0) \quad \rightarrow \quad \therefore \quad p(\theta)=e^{[\hat{\omega}] \theta} p(0)
$$

- Since $[\hat{\omega}]^{3}=-[\hat{\omega}],[\hat{\omega}]^{4}=-[\hat{\omega}]^{2}$, and $[\hat{\omega}]^{5}=[\hat{\omega}]$, the matrix exponential $e^{[\hat{\omega}] \theta}$ in series form is

$$
\begin{aligned}
e^{[\hat{\omega}] \theta} & =I+[\hat{\omega}] \theta+[\hat{\omega}]^{2} \frac{\theta^{2}}{2!}+[\hat{\omega}]^{3} \frac{\theta^{3}}{3!}+[\hat{\omega}]^{4} \frac{\theta^{4}}{4!}+\left[\hat{\omega} 5^{5} \frac{\theta^{5}}{5!}+\cdots\right. \\
& =I+[\hat{\omega}] \theta+[\hat{\omega}]^{2} \frac{\theta^{2}}{2!}-[\hat{\omega}] \frac{\theta^{3}}{3!}-[\hat{\omega}]^{2} \frac{\theta^{4}}{4!}+[\hat{\omega}] \frac{\theta^{5}}{5!}+\cdots \\
& =I+\left(\theta-\frac{\theta^{3}}{3!}+\cdots\right)[\hat{\omega}]+\left(\frac{\theta^{2}}{2!}-\frac{\theta^{4}}{4!}+\cdots\right)[\hat{\omega}]^{2}=I+\sin \theta[\hat{\omega}]+(1-\cos \theta)[\hat{\omega}]^{2}
\end{aligned}
$$

because the series expansions for $\sin \theta$ and $\cos \theta$:

$$
\begin{aligned}
& \sin \theta=\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}-\cdots \\
& \cos \theta=1-\frac{\theta^{2}}{2!}+\frac{\theta^{4}}{4!}-\cdots
\end{aligned}
$$

Proposition 3.7. (Rodrigues' formula for rotation) Given a vector $\hat{\omega} \theta \in \Re^{3}$ such that θ is any scalar and $\hat{\omega} \in \Re^{3}$ is a unit vector, the matrix exponential of $[\hat{\omega}] \in$ so(3) is

$$
\begin{aligned}
\operatorname{Rot}(\hat{\omega}, \theta) & =e^{[\hat{\omega}] \theta}=I+\sin \theta[\hat{\omega}]+(1-\cos \theta)[\hat{\omega}]^{2} \\
& =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+\sin \theta\left[\begin{array}{ccc}
0 & -\hat{\omega}_{3} & \hat{\omega}_{2} \\
\hat{\omega}_{3} & 0 & -\hat{\omega}_{1} \\
-\hat{\omega}_{2} & \hat{\omega}_{1} & 0
\end{array}\right]+(1-\cos \theta)\left[\begin{array}{ccc}
-\left(\hat{\omega}_{2}^{2}+\hat{\omega}_{3}^{2}\right) & \hat{\omega}_{1} \hat{\omega}_{2} & \hat{\omega}_{1} \hat{\omega}_{3} \\
\hat{\omega}_{1} \hat{\omega}_{2} & -\left(\hat{\omega}_{1}^{2}+\hat{\omega}_{3}^{2}\right) & \hat{\omega}_{2} \hat{\omega}_{3} \\
\hat{\omega}_{1} \hat{\omega}_{3} & \hat{\omega}_{2} \hat{\omega}_{3} & -\left(\hat{\omega}_{1}^{2}+\hat{\omega}_{2}^{2}\right)
\end{array}\right] \\
& =\left[\begin{array}{ccc}
c_{\theta}+\hat{\omega}_{1}^{2}\left(1-c_{\theta}\right) & \hat{\omega}_{1} \hat{\omega}_{2}\left(1-c_{\theta}\right)-\hat{\omega}_{3} s_{\theta} & \hat{\omega}_{1} \hat{\omega}_{3}\left(1-c_{\theta}\right)+\hat{\omega}_{2} s_{\theta} \\
\hat{\omega}_{1} \hat{\omega}_{2}\left(1-c_{\theta}\right)+\hat{\omega}_{3} s_{\theta} & c_{\theta}+\hat{\omega}_{2}^{2}\left(1-c_{\theta}\right) & \hat{\omega}_{2} \hat{\omega}_{3}\left(1-c_{\theta}\right)-\hat{\omega}_{1} s_{\theta} \\
\hat{\omega}_{1} \hat{\omega}_{3}\left(1-c_{\theta}\right)-\hat{\omega}_{2} s_{\theta} & \hat{\omega}_{2} \hat{\omega}_{3}\left(1-c_{\theta}\right)+\hat{\omega}_{1} s_{\theta} & c_{\theta}+\hat{\omega}_{3}^{2}\left(1-c_{\theta}\right)
\end{array}\right]
\end{aligned}
$$

note that $\hat{\omega}_{1}^{2}+\hat{\omega}_{2}^{2}+\hat{\omega}_{3}^{2}=1, c_{\theta}=\cos \theta$, and $s_{\theta}=\sin \theta$.

- Also
$R^{\prime}=e^{[\hat{\omega}] \theta} R=\operatorname{Rot}(\hat{\omega}, \theta) R \quad$ orientation achived by rotating R by θ about the axis $\hat{\omega}$ in the fixed frame $R^{\prime \prime}=R e^{[\hat{\omega}] \theta}=\operatorname{Rot}(\hat{\omega}, \theta) \quad$ orientation achived by rotating R by θ about the axis $\hat{\omega}$ in the body frame

Figure 3.12: The frame $\{b\}$ is obtained by a rotation from $\{s\}$ by $\theta_{1}=30^{\circ}$ about
$\hat{\omega}_{1}=(0,0.866,0.5)$.

Example 3.1. The frame $\{b\}$ in Figure 3.12 is obtained by rotation from an initial orientation aligned with the fixed frame $\{s\}$ about a unit axis $\hat{\omega}=(0,0.866,0.5)$ by an angle $\theta=30^{\circ}=0.524 \mathrm{rad}$. Since $s_{\theta}=\sin \theta=0.5$ and $c_{\theta}=\cos \theta=0.866$, we have

$$
R=e^{[\hat{\omega}] \theta}=\left[\begin{array}{ccc}
c_{\theta}+\hat{\omega}_{1}^{2}\left(1-c_{\theta}\right) & \hat{\omega}_{1} \hat{\omega}_{2}\left(1-c_{\theta}\right)-\hat{\omega}_{3} s_{\theta} & \hat{\omega}_{1} \hat{\omega}_{3}\left(1-c_{\theta}\right)+\hat{\omega}_{2} s_{\theta} \\
\hat{\omega}_{1} \hat{\omega}_{2}\left(1-c_{\theta}\right)+\hat{\omega}_{3} s_{\theta} & c_{\theta}+\hat{\omega}_{2}^{2}\left(1-c_{\theta}\right) & \hat{\omega}_{2} \hat{\omega}_{3}\left(1-c_{\theta}\right)-\hat{\omega}_{1} s_{\theta} \\
\hat{\omega}_{1} \hat{\omega}_{3}\left(1-c_{\theta}\right)-\hat{\omega}_{2} s_{\theta} & \hat{\omega}_{2} \hat{\omega}_{3}\left(1-c_{\theta}\right)+\hat{\omega}_{1} s_{\theta} & c_{\theta}+\hat{\omega}_{3}^{2}\left(1-c_{\theta}\right)
\end{array}\right]=\left[\begin{array}{ccc}
0.866 & -0.250 & 0.433 \\
0.250 & 0.967 & 0.058 \\
-0.433 & 0.058 & 0.899
\end{array}\right]
$$

Exponetial coordinates and matrix logarithm of rotation R are, respectively,

$$
\hat{\omega} \theta=\left[\begin{array}{c}
0 \\
0.453 \\
0.262
\end{array}\right] \quad \text { and } \quad[\omega] \theta=[\omega \theta]=\left[\begin{array}{ccc}
0 & -0.262 & 0.453 \\
0.262 & 0 & 0 \\
-0.453 & 0 & 0
\end{array}\right]
$$

If $\hat{\omega} \theta \in \Re^{3}$ represents the exponential coordinates of a rotation matrix R, then the skew-symmetric matrix $[\omega] \theta=[\omega \theta] \in \Re^{3 \times 3}$ is the matrix logarithm of a rotation R.

Matrix Logarithm of Rotations

- From the exponential coordinates $\hat{\omega} \theta$,

$$
\begin{array}{cll}
\text { matrix exponetial : } & {[\hat{\omega}] \theta \in \operatorname{so}(3) \quad \rightarrow} & R=e^{[\hat{\omega}] \theta} \in S O(3) \\
\text { matrix logarithm : } & R=e^{[\hat{\omega}] \theta} \in S O(3) & \rightarrow \quad[\hat{\omega}] \theta \in \operatorname{so}(3)
\end{array}
$$

- Let us derive the matrix logarithm from $R=e^{[\hat{\omega}] \theta}$

$$
R=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]=\left[\begin{array}{ccc}
c_{\theta}+\hat{\omega}_{1}^{2}\left(1-c_{\theta}\right) & \hat{\omega}_{1} \hat{\omega}_{2}\left(1-c_{\theta}\right)-\hat{\omega}_{3} s_{\theta} & \hat{\omega}_{1} \hat{\omega}_{3}\left(1-c_{\theta}\right)+\hat{\omega}_{2} s_{\theta} \\
\hat{\omega}_{1} \hat{\omega}_{2}\left(1-c_{\theta}\right)+\hat{\omega}_{3} s_{\theta} & c_{\theta}+\hat{\omega}_{2}^{2}\left(1-c_{\theta}\right) & \hat{\omega}_{2} \hat{\omega}_{3}\left(1-c_{\theta}\right)-\hat{\omega}_{1} s_{\theta} \\
\hat{\omega}_{1} \hat{\omega}_{3}\left(1-c_{\theta}\right)-\hat{\omega}_{2} s_{\theta} & \hat{\omega}_{2} \hat{\omega}_{3}\left(1-c_{\theta}\right)+\hat{\omega}_{1} s_{\theta} & c_{\theta}+\hat{\omega}_{3}^{2}\left(1-c_{\theta}\right)
\end{array}\right]
$$

- Subtracting the transpose from both sides leads to the following

$$
R-R^{T}=\left[\begin{array}{ccc}
0 & r_{12}-r_{21} & r_{13}-r_{31} \\
r_{21}-r_{12} & 0 & r_{23}-r_{32} \\
r_{31}-r_{13} & r_{32}-r_{23} & 0
\end{array}\right]=\left[\begin{array}{ccc}
0 & -2 \hat{\omega}_{3} s_{\theta} & 2 \hat{\omega}_{2} s_{\theta} \\
2 \hat{\omega}_{3} s_{\theta} & 0 & -2 \hat{\omega}_{1} s_{\theta} \\
-2 \hat{\omega}_{2} s_{\theta} & 2 \hat{\omega}_{1} s_{\theta} & 0
\end{array}\right]
$$

- If $\sin \theta \neq 0$, then we can get the skew-symmetric matrix form of the rotation axis $\hat{\omega}$ by divding $2 \sin \theta$ and take the trace

$$
[\hat{\omega}]=\frac{1}{2 \sin \theta}\left(R-R^{T}\right)=\left[\begin{array}{ccc}
0 & -\hat{\omega}_{3} & \hat{\omega}_{2} \\
\hat{\omega}_{3} & 0 & -\hat{\omega}_{1} \\
-\hat{\omega}_{2} & \hat{\omega}_{1} & 0
\end{array}\right]
$$

- For the rotation angle θ about the rotation axix $\hat{\omega}$ from R, let us take the trace

$$
\begin{aligned}
\operatorname{tr}(R) & =r_{11}+r_{22}+r_{33}=3 c_{\theta}+\left(\hat{\omega}_{1}^{2}+\hat{\omega}_{2}^{2}+\hat{\omega}_{3}^{2}\right)\left(1-c_{\theta}\right) \\
& =1+2 \cos \theta \quad \rightarrow \quad \theta=\cos ^{-1}\left(\frac{\operatorname{tr}(R)-1}{2}\right)
\end{aligned}
$$

note that $\hat{\omega}_{1}^{2}+\hat{\omega}_{2}^{2}+\hat{\omega}_{3}^{2}=1$.

- Recall that $\hat{\omega}$ represents the axis of rotation for the given R. Because of the $\sin \theta$ term in the denominator, $[\hat{\omega}]$ is not well defined if θ is an integer multiple of π.
- Let us now return to the case $\theta=k \pi$, where k is some integer.
- When k is an even integer, regardless of $\hat{\omega}$ we have rotated back to $R=I$ so the vector $\hat{\omega}$ is undefined.
- When k is an odd integer (corresponding to $\theta= \pm \pi, \pm 3 \pi, \cdots$ which in turn implies $\operatorname{tr}(R)=$ -1), the exponential formula simplifies to

$$
\begin{aligned}
& R=e^{[\hat{\omega}] \theta}=I+2[\hat{\omega}]^{2}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+2\left[\begin{array}{ccc}
-\left(\hat{\omega}_{2}^{2}+\hat{\omega}_{3}^{2}\right) & \hat{\omega}_{1} \hat{\omega}_{2} & \hat{\omega}_{1} \hat{\omega}_{3} \\
\hat{\omega}_{1} \hat{\omega}_{2} & -\left(\hat{\omega}_{1}^{2}+\hat{\omega}_{3}^{2}\right) & \hat{\omega}_{2} \hat{\omega}_{3} \\
\hat{\omega}_{1} \hat{\omega}_{3} & \hat{\omega}_{2} \hat{\omega}_{3} & -\left(\hat{\omega}_{1}^{2}+\hat{\omega}_{2}^{2}\right)
\end{array}\right] \\
& {\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]=\left[\begin{array}{ccc}
1-2\left(\hat{\omega}_{2}^{2}+\hat{\omega}_{3}^{2}\right) & 2 \hat{\omega}_{1} \hat{\omega}_{2} & 2 \hat{\omega}_{1} \hat{\omega}_{3} \\
2 \hat{\omega}_{1} \hat{\omega}_{2} & 1-2\left(\hat{\omega}_{1}^{2}+\hat{\omega}_{3}^{2}\right) & 2 \hat{\omega}_{2} \hat{\omega}_{3} \\
2 \hat{\omega}_{1} \hat{\omega}_{3} & 2 \hat{\omega}_{2} \hat{\omega}_{3} & 1-2\left(\hat{\omega}_{1}^{2}+\hat{\omega}_{2}^{2}\right)
\end{array}\right] }
\end{aligned}
$$

- Three diagonal terms can be manipulated as

$$
r_{i i}=1-2\left(\hat{\omega}_{j}^{2}+\hat{\omega}_{k}^{2}\right)=1-2\left(1-\hat{\omega}_{i}^{2}\right) \quad \rightarrow \quad \hat{\omega}_{i}=\sqrt{\frac{r_{i i}+1}{2}}
$$

from $\hat{\omega}_{i}^{2}+\hat{\omega}_{j}^{2}+\hat{\omega}_{k}^{2}=1$.

- Off-diagonal terms lead to the following three equations:

$$
2 \hat{\omega}_{i} \hat{\omega}_{j}=r_{i j}=r_{j i}
$$

- For example, if $\operatorname{tr}(R)=-1$ then $\theta=\pi$, and the axis of rotation is described by

$$
\begin{aligned}
& \hat{\omega}_{1}=\sqrt{\frac{r_{11}+1}{2}} \\
& \hat{\omega}_{2}=\frac{r_{21}}{\sqrt{2\left(r_{11}+1\right)}} \quad \leftarrow \quad 2 \hat{\omega}_{1} \hat{\omega}_{2}=r_{21} \\
& \hat{\omega}_{3}=\frac{r_{31}}{\sqrt{2\left(r_{11}+1\right)}} \quad \leftarrow \quad 2 \hat{\omega}_{1} \hat{\omega}_{3}=r_{31}
\end{aligned}
$$

Note that $r_{12}=r_{21}, r_{13}=r_{31}$, and $r_{23}=r_{32}$ when $\theta=\pi$.

Algorithm 3.1. Given $R \in S O(3)$, find $\theta \in[0, \pi]$ and a unit rotation axis $\hat{\omega} \in \Re^{3},\|\hat{\omega}\|=1$ such that $e^{[\hat{\omega}] \theta}=R$. The vector $\hat{\omega} \theta \in \Re^{3}$ comprises the exponential coordinates for R and skew-symmetric matrix $[\hat{\omega}] \theta \in \operatorname{so}(3)$ is the matrix logarithm of R.

- If $R=I$, then $\theta=0$ and $\hat{\omega}$ is undefined
- If $\operatorname{tr}(R)=-1$, then $\theta=\pi$. Set $\hat{\omega}$ equal to any of the following three vectors that is a feasible solution:

$$
\hat{\omega}=\frac{1}{\sqrt{2\left(1+r_{33}\right)}}\left[\begin{array}{c}
r_{13} \\
r_{23} \\
1+r_{33}
\end{array}\right]=\frac{1}{\sqrt{2\left(1+r_{22}\right)}}\left[\begin{array}{c}
r_{12} \\
1+r_{22} \\
r_{32}
\end{array}\right]=\frac{1}{\sqrt{2\left(1+r_{11}\right)}}\left[\begin{array}{c}
1+r_{11} \\
r_{21} \\
r_{31}
\end{array}\right]
$$

Note that if $\hat{\omega}$ is a solution, then so is $-\hat{\omega}$.

- Otherwise $\theta=\cos ^{-1}\left(\frac{\operatorname{tr}(R)-1}{2}\right) \in[0, \pi)$ and

$$
[\hat{\omega}]=\frac{1}{2 \sin \theta}\left(R-R^{T}\right)
$$

Figure 3.13: $S O(3)$ as a solid ball of radius π. The exponential coordinates $r=\hat{\omega} \theta$ may lie anywhere within the solid ball.

- Because the matrix logarithm calculates exponential coordinates $\hat{\omega} \theta$ satisfying $\|\hat{\omega} \theta\| \leq \pi$, we can picture the rotation group $S O(3)$ as a solid ball of radius π
- Given a point $r \in \Re^{3}$ in this solid ball, let $\hat{\omega}=\frac{r}{\|r\|}$ be the unit axis in the direction from the origin to the point r and let $\theta=\|r\|$ be the distance from the origin to r, so that $r=\hat{\omega} \theta$.
- For any $R \in S O(3)$ such that $\operatorname{tr}(R) \neq-1$, there exists a unique r in the interior of the solid ball such that $e^{[r]}=R$.
- In the event that $\operatorname{tr}(R)=-1, \log R$ is given by two antipodal points on the surface of this solid ball. That is, if there exists some r such that $R=e^{[r]}$ with $\|r\|=\pi$ then $R=e^{[-r]}$ also holds; both r and $-r$ correspond to the same rotation R.

