### 2.2 Angular Velocities



Figure 3.10: (Left) The instantaneous angular velocity vector. (Right) Calculating  $\dot{\hat{x}}.$ 

• Suppose that a frame with unit axes  $\{\hat{x}, \hat{y}, \hat{z}\}$  is attached to a rotating body. For given the rate of rotation  $\dot{\theta}$  and the instantaneous axis of rotation  $\hat{w}$ , the angular velocity w is defined as follows:

$$\mathbf{w} = \hat{\mathbf{w}}\dot{\mathbf{\theta}}$$

• Let us determine the time derivatives of these unit axes

$$\dot{\hat{x}} = \mathbf{w} \times \hat{x}$$
  $\dot{\hat{y}} = \mathbf{w} \times \hat{y}$   $\dot{\hat{z}} = \mathbf{w} \times \hat{z}$ 

- Let R(t) be the rotation matrix describing the orientation of the body frame w.r.t. the fixed frame at time t, and thus we have  $R(t) = [\hat{x}, \hat{y}, \hat{z}] = [r_1, r_2, r_3]$  in the fixed-frame coordinates.
- At a specific time t, let  $\omega_s \in \Re^3$  be the angular velocity w expressed in fixed-frame coordinates. Above equations can be expressed in fixed-frame coordinates as

$$\dot{r}_i = \omega_s \times r_i$$
 for  $i = 1, 2, 3 \rightarrow R = \omega_s \times R$ 

### Skew-symmetric matrix representation

• To eliminate the cross product, let us introduce new notation  $[\omega_s]$  as  $3 \times 3$  skew-symmetric matrix representation of  $\omega_s \in \Re^3$ . Then we have

$$\dot{R} = \omega_s \times R = [\omega_s]R$$

**Definition 3.3.** Given a vector  $x = [x_1, x_2, x_3]^T \in \Re^3$ , define

$$x] = \begin{bmatrix} 0 & -x_3 & x_2 \\ x_3 & 0 & -x_1 \\ -x_2 & x_1 & 0 \end{bmatrix}$$

The matrix [x] is a  $3 \times 3$  skew-symmetric matrix representation of x; that is,

$$[x] = -[x]^T$$

The set of all  $3 \times 3$  real skew-symmetric matrices is called so(3).

**Proposition 3.5.** Given any  $\omega \in \Re^3$  and  $R \in SO(3)$ , the following always holds:

$$R[\omega]R^T = [R\omega]$$

• With the skew-symmetric notation, we can get the following equation:

$$[\omega_s]R = \dot{R} \quad \rightarrow \quad [\omega_s] = \dot{R}R^{-1}$$

• Now let  $\omega_b$  be w expressed in body-frame coordinates. To see how to obtain  $\omega_b$  from  $\omega_s$  and vice versa, we write R explicitly as  $R_{sb}$ . By our subscript cancellation rule,  $\omega_s = R_{sb}\omega_b$ , we have

$$\omega_b = R_{sb}^{-1} \omega_s = R^{-1} \omega_s = R^T \omega_s$$

• Let us now express this relation in skew-symmetric matrix form:

$$[\omega_b] = [R^T \omega_s] = R^T [\omega_s] R = R^T \dot{R} R^T R = R^T \dot{R} = R^{-1} \dot{R}$$

**Proposition 3.6.** Let  $R(t) = R_{sb}$  denote the orientation of the rotating frame as seen from the fixed frame. Denote by w the angular velocity of the rotating frame. Then

$$\dot{R}R^{-1} = [\omega_s] \qquad \qquad R^{-1}\dot{R} = [\omega_b]$$

- $\omega_s \in \Re^3$  is the fixed-frame vector representation of w and  $[\omega_s] \in so(3)$  is its  $3 \times 3$  matrix representation. Note that  $\omega_s$  is independent of the choice of body frame, although it may appear to depend on both frames from  $\dot{R}R^{-1}$ .
- $\omega_b \in \Re^3$  is the body-frame vector representation of w, and  $\omega_b$  is independent of the choice of fixed frame.

# 2.3 Exponential Coordinate Representation of Rotation

• The exponential coordinates parametrize a rotation matrix in terms of a rotation axis (represented by a unit vector  $\hat{\omega}$ ) and an angle of rotation  $\theta$  about that axis;

 $\hat{\omega}\theta\in\Re^3$ 

where it is called axis-angle representation of a rotation

- The exponential coordinate representation  $\hat{\omega}\theta$  for a rotation matrix R can be interpreted equivalently as:
  - the axis  $\hat{\omega}$  and rotation angle  $\theta$  such that, if a frame initially coincident with  $\{s\}$  were rotated by  $\theta$  about  $\hat{\omega}$ , its final orientation relative to  $\{s\}$  would be expressed by *R*.
  - the angular velocity  $\hat{\omega}\theta$  expressed in {s} such that, if a frame initially coincident with {s} followed  $\hat{\omega}\theta$  for one unit of time, its final orientation would be expressed by R
  - the angular velocity  $\hat{\omega}$  expressed in {s} such that, if a frame initially coincident with {s} followed for  $\theta$  units of time, its final orientation would be expressed by R.
- Latter two views suggest that we consider exponential coordiantes in the setting of linear differential equations.

## **Essential Results from Linear Differential Equations Theory**

• Let us begin with the simple scalar linear differential equation using the initial condition  $x_0 = x(0) \in \Re$  from time 0 to t

$$\dot{x}(t) = ax(t) \quad \rightarrow \quad \frac{dx}{dt} = ax \quad \rightarrow \quad \frac{dx}{x} = adt \quad \rightarrow$$
$$\ln x|_{x(0)}^{x(t)} = a(t-0) \quad \rightarrow \quad \ln \frac{x(t)}{x(0)} = at \quad \rightarrow \quad \therefore \quad x(t) = e^{at}x_0$$

where series expansion of exponential function is

$$e^{at} = 1 + at + \frac{(at)^2}{2!} + \frac{(at)^3}{3!} + \cdots$$

• Now consider the vector linear differential equation with a *n*-dimensional  $x_0 \in \Re^n$ 

$$\dot{x}(t) = Ax(t) \qquad \rightarrow \qquad x(t) = e^{At}x_0$$

where  $A \in \Re^{n \times n}$  and its matrix exponential  $e^{At} \in \Re^{n \times n}$  is defined as

$$e^{At} = I + At + \frac{(At)^2}{2!} + \frac{(At)^3}{3!} + \cdots$$

in which the convergence and existence of the matrix exponential are guaranted, but we will skip the proofs.

• While  $AB \neq BA$  for arbitrary square matrices A and B, it is always true that

$$Ae^{At} = e^{At}A$$

• How to obtain the matrix exponential as a closed-form: using the diagonalization technique  $A = PDP^{-1}$ 

$$\begin{split} e^{At} &= I + (PDP^{-1})t + (PDP^{-1})(PDP^{-1})\frac{(t)^2}{2!} + (PDP^{-1})(PDP^{-1})(PDP^{-1})\frac{(t)^3}{3!} + \cdots \\ &= I + (PDP^{-1})t + (PD^2P^{-1})\frac{(t)^2}{2!} + (PD^3P^{-1})\frac{(t)^3}{3!} + \cdots \\ &= P\left(I + Dt + \frac{(Dt)^2}{2!} + \frac{(Dt)^3}{3!} + \cdots\right)P^{-1} \\ &= Pe^{Dt}P^{-1} \end{split}$$

• Since D is diagonal, i.e.,  $D = diag(d_1, d_2, \dots, d_n)$ , then its matrix exponential is particularly simple to evaluate

$$e^{Dt} = \begin{bmatrix} e^{d_1 t} & 0 & \cdots & 0 \\ 0 & e^{d_2 t} & \cdots & 0 \\ \vdots & & & \\ 0 & 0 & \cdots & e^{d_n t} \end{bmatrix} \in \Re^{n \times n}$$

• Please refer to Proposition 3.10 in the textbook!

#### **Exponential Coordinates of Rotations**



**Figure 3.11:** The vector p(0) is rotated by an angle  $\theta$  about the axis  $\hat{\omega}$ , to  $p(\theta)$ .

- Suppose that a three-dimensional  $p(0) \in \Re^3$  is rotated by  $\theta$  about  $\hat{\omega}$  to  $p(\theta)$ ; where we assume that all quantities are expressed in fixed-frame coordinates.
- This rotation can be achieved by imagining that p(0) rotates at a constant rate of 1rad/s from time t = 0 to  $t = \theta$ .
- Let p(t) denote the path traced by the tip of the vector. The velocity of p(t), denoted  $\dot{p}$ , is then given by

$$\dot{p} = \hat{\omega} \times p = [\hat{\omega}]p \quad \rightarrow \quad p(t) = e^{[\hat{\omega}]t}p(0) \quad \rightarrow \quad \therefore \quad p(\theta) = e^{[\hat{\omega}]\theta}p(0)$$

• Since  $[\hat{\omega}]^3 = -[\hat{\omega}]$ ,  $[\hat{\omega}]^4 = -[\hat{\omega}]^2$ , and  $[\hat{\omega}]^5 = [\hat{\omega}]$ , the matrix exponential  $e^{[\hat{\omega}]\theta}$  in series form is

$$e^{[\hat{\omega}]\theta} = I + [\hat{\omega}]\theta + [\hat{\omega}]^2 \frac{\theta^2}{2!} + [\hat{\omega}]^3 \frac{\theta^3}{3!} + [\hat{\omega}]^4 \frac{\theta^4}{4!} + [\hat{\omega}]^5 \frac{\theta^5}{5!} + \cdots$$
  
=  $I + [\hat{\omega}]\theta + [\hat{\omega}]^2 \frac{\theta^2}{2!} - [\hat{\omega}]\frac{\theta^3}{3!} - [\hat{\omega}]^2 \frac{\theta^4}{4!} + [\hat{\omega}]\frac{\theta^5}{5!} + \cdots$   
=  $I + \left(\theta - \frac{\theta^3}{3!} + \cdots\right) [\hat{\omega}] + \left(\frac{\theta^2}{2!} - \frac{\theta^4}{4!} + \cdots\right) [\hat{\omega}]^2 = I + \sin\theta[\hat{\omega}] + (1 - \cos\theta)[\hat{\omega}]^2$ 

because the series expansions for  $\sin\theta$  and  $\cos\theta$ :

$$\sin \theta = \theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \cdots$$
$$\cos \theta = 1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \cdots$$

**Proposition 3.7.** (Rodrigues' formula for rotation) Given a vector  $\hat{\omega}\theta \in \Re^3$  such that  $\theta$  is any scalar and  $\hat{\omega} \in \Re^3$  is a unit vector, the matrix exponential of  $[\hat{\omega}] \in so(3)$  is

$$\begin{aligned} Rot(\hat{\omega},\theta) &= e^{[\hat{\omega}]\theta} = I + \sin\theta[\hat{\omega}] + (1 - \cos\theta)[\hat{\omega}]^2 \\ &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} + \sin\theta \begin{bmatrix} 0 & -\hat{\omega}_3 & \hat{\omega}_2 \\ \hat{\omega}_3 & 0 & -\hat{\omega}_1 \\ -\hat{\omega}_2 & \hat{\omega}_1 & 0 \end{bmatrix} + (1 - \cos\theta) \begin{bmatrix} -(\hat{\omega}_2^2 + \hat{\omega}_3^2) & \hat{\omega}_1 \hat{\omega}_2 & \hat{\omega}_1 \hat{\omega}_3 \\ \hat{\omega}_1 \hat{\omega}_2 & -(\hat{\omega}_1^2 + \hat{\omega}_3^2) & \hat{\omega}_2 \hat{\omega}_3 \\ \hat{\omega}_1 \hat{\omega}_3 & \hat{\omega}_2 \hat{\omega}_3 & -(\hat{\omega}_1^2 + \hat{\omega}_2^2) \end{bmatrix} \\ &= \begin{bmatrix} c_{\theta} + \hat{\omega}_1^2(1 - c_{\theta}) & \hat{\omega}_1 \hat{\omega}_2(1 - c_{\theta}) - \hat{\omega}_3 s_{\theta} & \hat{\omega}_1 \hat{\omega}_3(1 - c_{\theta}) + \hat{\omega}_2 s_{\theta} \\ \hat{\omega}_1 \hat{\omega}_3(1 - c_{\theta}) - \hat{\omega}_2 s_{\theta} & \hat{\omega}_2 \hat{\omega}_3(1 - c_{\theta}) + \hat{\omega}_1 s_{\theta} & c_{\theta} + \hat{\omega}_3^2(1 - c_{\theta}) \end{bmatrix} \end{aligned}$$

note that  $\hat{\omega}_1^2 + \hat{\omega}_2^2 + \hat{\omega}_3^2 = 1$ ,  $c_{\theta} = \cos \theta$ , and  $s_{\theta} = \sin \theta$ .

• Also

 $R' = e^{[\hat{\omega}]\theta}R = Rot(\hat{\omega}, \theta)R$  orientation achived by rotating R by  $\theta$  about the axis  $\hat{\omega}$  in the fixed frame  $R'' = Re^{[\hat{\omega}]\theta} = RRot(\hat{\omega}, \theta)$  orientation achived by rotating R by  $\theta$  about the axis  $\hat{\omega}$  in the body frame



Figure 3.12: The frame {b} is obtained by a rotation from {s} by  $\theta_1 = 30^{\circ}$  about  $\hat{\omega}_1 = (0, 0.866, 0.5)$ .

**Example 3.1.** The frame  $\{b\}$  in Figure 3.12 is obtained by rotation from an initial orientation aligned with the fixed frame  $\{s\}$  about a unit axis  $\hat{\omega} = (0, 0.866, 0.5)$  by an angle  $\theta = 30^{\circ} = 0.524$ rad. Since  $s_{\theta} = \sin \theta = 0.5$  and  $c_{\theta} = \cos \theta = 0.866$ , we have

$$R = e^{[\hat{\omega}]\theta} = \begin{bmatrix} c_{\theta} + \hat{\omega}_{1}^{2}(1 - c_{\theta}) & \hat{\omega}_{1}\hat{\omega}_{2}(1 - c_{\theta}) - \hat{\omega}_{3}s_{\theta} & \hat{\omega}_{1}\hat{\omega}_{3}(1 - c_{\theta}) + \hat{\omega}_{2}s_{\theta} \\ \hat{\omega}_{1}\hat{\omega}_{2}(1 - c_{\theta}) + \hat{\omega}_{3}s_{\theta} & c_{\theta} + \hat{\omega}_{2}^{2}(1 - c_{\theta}) & \hat{\omega}_{2}\hat{\omega}_{3}(1 - c_{\theta}) - \hat{\omega}_{1}s_{\theta} \\ \hat{\omega}_{1}\hat{\omega}_{3}(1 - c_{\theta}) - \hat{\omega}_{2}s_{\theta} & \hat{\omega}_{2}\hat{\omega}_{3}(1 - c_{\theta}) + \hat{\omega}_{1}s_{\theta} & c_{\theta} + \hat{\omega}_{3}^{2}(1 - c_{\theta}) \end{bmatrix} = \begin{bmatrix} 0.866 & -0.250 & 0.433 \\ 0.250 & 0.967 & 0.058 \\ -0.433 & 0.058 & 0.899 \end{bmatrix}$$

Exponetial coordinates and matrix logarithm of rotation R are, respectively,

$$\hat{\omega}\theta = \begin{bmatrix} 0\\ 0.453\\ 0.262 \end{bmatrix} \qquad \text{and} \qquad \begin{bmatrix} \omega \theta \end{bmatrix} = \begin{bmatrix} 0 & -0.262 & 0.453\\ 0.262 & 0 & 0\\ -0.453 & 0 & 0 \end{bmatrix}$$

If  $\hat{\omega}\theta \in \Re^3$  represents the exponential coordinates of a rotation matrix R, then the skew-symmetric matrix  $[\omega]\theta = [\omega\theta] \in \Re^{3\times 3}$  is the matrix logarithm of a rotation R.

### **Matrix Logarithm of Rotations**

- From the exponential coordinates  $\hat{\omega}\theta$ ,
  - $\begin{array}{lll} \text{matrix exponetial}: & [\hat{\omega}]\theta \in so(3) & \to & R = e^{[\hat{\omega}]\theta} \in SO(3) \\ \text{matrix logarithm}: & R = e^{[\hat{\omega}]\theta} \in SO(3) & \to & [\hat{\omega}]\theta \in so(3) \\ \end{array}$
- Let us derive the matrix logarithm from  $R=e^{[\hat{\omega}]\theta}$

$$R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} = \begin{bmatrix} c_{\theta} + \hat{\omega}_1^2 (1 - c_{\theta}) & \hat{\omega}_1 \hat{\omega}_2 (1 - c_{\theta}) - \hat{\omega}_3 s_{\theta} & \hat{\omega}_1 \hat{\omega}_3 (1 - c_{\theta}) + \hat{\omega}_2 s_{\theta} \\ \hat{\omega}_1 \hat{\omega}_2 (1 - c_{\theta}) + \hat{\omega}_3 s_{\theta} & c_{\theta} + \hat{\omega}_2^2 (1 - c_{\theta}) & \hat{\omega}_2 \hat{\omega}_3 (1 - c_{\theta}) - \hat{\omega}_1 s_{\theta} \\ \hat{\omega}_1 \hat{\omega}_3 (1 - c_{\theta}) - \hat{\omega}_2 s_{\theta} & \hat{\omega}_2 \hat{\omega}_3 (1 - c_{\theta}) + \hat{\omega}_1 s_{\theta} & c_{\theta} + \hat{\omega}_3^2 (1 - c_{\theta}) \end{bmatrix}$$

• Subtracting the transpose from both sides leads to the following

$$R - R^{T} = \begin{bmatrix} 0 & r_{12} - r_{21} & r_{13} - r_{31} \\ r_{21} - r_{12} & 0 & r_{23} - r_{32} \\ r_{31} - r_{13} & r_{32} - r_{23} & 0 \end{bmatrix} = \begin{bmatrix} 0 & -2\hat{\omega}_{3}s_{\theta} & 2\hat{\omega}_{2}s_{\theta} \\ 2\hat{\omega}_{3}s_{\theta} & 0 & -2\hat{\omega}_{1}s_{\theta} \\ -2\hat{\omega}_{2}s_{\theta} & 2\hat{\omega}_{1}s_{\theta} & 0 \end{bmatrix}$$

• If  $\sin \theta \neq 0$ , then we can get the skew-symmetric matrix form of the rotation axis  $\hat{\omega}$  by divding  $2\sin\theta$  and take the trace

$$[\hat{\omega}] = \frac{1}{2\sin\theta}(R - R^T) = \begin{bmatrix} 0 & -\hat{\omega}_3 & \hat{\omega}_2 \\ \hat{\omega}_3 & 0 & -\hat{\omega}_1 \\ -\hat{\omega}_2 & \hat{\omega}_1 & 0 \end{bmatrix}$$

• For the rotation angle  $\theta$  about the rotation axix  $\hat{\omega}$  from R, let us take the trace

$$tr(R) = r_{11} + r_{22} + r_{33} = 3c_{\theta} + (\hat{\omega}_1^2 + \hat{\omega}_2^2 + \hat{\omega}_3^2)(1 - c_{\theta})$$
$$= 1 + 2\cos\theta \quad \to \quad \theta = \cos^{-1}\left(\frac{tr(R) - 1}{2}\right)$$

note that  $\hat{\omega}_1^2 + \hat{\omega}_2^2 + \hat{\omega}_3^2 = 1$ .

- Recall that  $\hat{\omega}$  represents the axis of rotation for the given *R*. Because of the  $\sin \theta$  term in the denominator,  $[\hat{\omega}]$  is not well defined if  $\theta$  is an integer multiple of  $\pi$ .
- Let us now return to the case  $\theta = k\pi$ , where k is some integer.
  - When k is an even integer, regardless of  $\hat{\omega}$  we have rotated back to R = I so the vector  $\hat{\omega}$  is undefined.
  - When k is an odd integer (corresponding to  $\theta = \pm \pi, \pm 3\pi, \cdots$  which in turn implies tr(R) = -1), the exponential formula simplifies to

$$R = e^{[\hat{\omega}]\theta} = I + 2[\hat{\omega}]^2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} + 2 \begin{bmatrix} -(\hat{\omega}_2^2 + \hat{\omega}_3^2) & \hat{\omega}_1 \hat{\omega}_2 & \hat{\omega}_1 \hat{\omega}_3 \\ \hat{\omega}_1 \hat{\omega}_2 & -(\hat{\omega}_1^2 + \hat{\omega}_3^2) & \hat{\omega}_2 \hat{\omega}_3 \\ \hat{\omega}_1 \hat{\omega}_3 & \hat{\omega}_2 \hat{\omega}_3 & -(\hat{\omega}_1^2 + \hat{\omega}_2^2) \end{bmatrix}$$
$$\begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} = \begin{bmatrix} 1 - 2(\hat{\omega}_2^2 + \hat{\omega}_3^2) & 2\hat{\omega}_1 \hat{\omega}_2 & 2\hat{\omega}_1 \hat{\omega}_3 \\ 2\hat{\omega}_1 \hat{\omega}_2 & 1 - 2(\hat{\omega}_1^2 + \hat{\omega}_3^2) & 2\hat{\omega}_2 \hat{\omega}_3 \\ 2\hat{\omega}_1 \hat{\omega}_3 & 2\hat{\omega}_2 \hat{\omega}_3 & 1 - 2(\hat{\omega}_1^2 + \hat{\omega}_2^2) \end{bmatrix}$$

- Three diagonal terms can be manipulated as

$$r_{ii} = 1 - 2(\hat{\omega}_j^2 + \hat{\omega}_k^2) = 1 - 2(1 - \hat{\omega}_i^2) \quad \rightarrow \quad \hat{\omega}_i = \sqrt{\frac{r_{ii} + 1}{2}}$$

from  $\hat{\omega}_i^2 + \hat{\omega}_j^2 + \hat{\omega}_k^2 = 1$ .

- Off-diagonal terms lead to the following three equations:

$$2\hat{\omega}_i\hat{\omega}_j = r_{ij} = r_{ji}$$

– For example, if tr(R) = -1 then  $\theta = \pi$ , and the axis of rotation is described by

$$\hat{\omega}_{1} = \sqrt{\frac{r_{11} + 1}{2}}$$

$$\hat{\omega}_{2} = \frac{r_{21}}{\sqrt{2(r_{11} + 1)}} \quad \leftarrow 2\hat{\omega}_{1}\hat{\omega}_{2} = r_{21}$$

$$\hat{\omega}_{3} = \frac{r_{31}}{\sqrt{2(r_{11} + 1)}} \quad \leftarrow 2\hat{\omega}_{1}\hat{\omega}_{3} = r_{31}$$

Note that  $r_{12} = r_{21}$ ,  $r_{13} = r_{31}$ , and  $r_{23} = r_{32}$  when  $\theta = \pi$ .

**Algorithm 3.1.** Given  $R \in SO(3)$ , find  $\theta \in [0, \pi]$  and a unit rotation axis  $\hat{\omega} \in \Re^3$ ,  $\|\hat{\omega}\| = 1$  such that  $e^{[\hat{\omega}]\theta} = R$ . The vector  $\hat{\omega}\theta \in \Re^3$  comprises the exponential coordinates for R and skew-symmetric matrix  $[\hat{\omega}]\theta \in so(3)$  is the matrix logarithm of R.

- If R = I, then  $\theta = 0$  and  $\hat{\omega}$  is undefined
- If tr(R) = -1, then  $\theta = \pi$ . Set  $\hat{\omega}$  equal to any of the following three vectors that is a feasible solution:

$$\hat{\omega} = \frac{1}{\sqrt{2(1+r_{33})}} \begin{bmatrix} r_{13} \\ r_{23} \\ 1+r_{33} \end{bmatrix} = \frac{1}{\sqrt{2(1+r_{22})}} \begin{bmatrix} r_{12} \\ 1+r_{22} \\ r_{32} \end{bmatrix} = \frac{1}{\sqrt{2(1+r_{11})}} \begin{bmatrix} 1+r_{11} \\ r_{21} \\ r_{31} \end{bmatrix}$$

Note that if  $\hat{\omega}$  is a solution, then so is  $-\hat{\omega}$ .

• Otherwise  $\theta = \cos^{-1}\left(\frac{tr(R)-1}{2}\right) \in [0,\pi)$  and

$$[\hat{\omega}] = \frac{1}{2\sin\theta} (R - R^T)$$



Figure 3.13: SO(3) as a solid ball of radius  $\pi$ . The exponential coordinates  $r = \hat{\omega}\theta$  may lie anywhere within the solid ball.

- Because the matrix logarithm calculates exponential coordinates  $\hat{\omega}\theta$  satisfying  $\|\hat{\omega}\theta\| \leq \pi$ , we can picture the rotation group SO(3) as a solid ball of radius  $\pi$
- Given a point  $r \in \Re^3$  in this solid ball, let  $\hat{\omega} = \frac{r}{\|r\|}$  be the unit axis in the direction from the origin to the point r and let  $\theta = \|r\|$  be the distance from the origin to r, so that  $r = \hat{\omega}\theta$ .
- For any  $R \in SO(3)$  such that  $tr(R) \neq -1$ , there exists a unique r in the interior of the solid ball such that  $e^{[r]} = R$ .
- In the event that tr(R) = -1,  $\log R$  is given by two antipodal points on the surface of this solid ball. That is, if there exists some r such that  $R = e^{[r]}$  with  $||r|| = \pi$  then  $R = e^{[-r]}$  also holds; both r and -r correspond to the same rotation R.