2 Rotations and Angular Velocities

2.1 Rotation Matrices

- Among nine entries in the rotation matrix R, only three can be chosen independently.

1. The unit norm condition: $\hat{x}_{b}, \hat{y}_{b}, \hat{z}_{b}$ are all unit vectors, i.e.,

$$
\begin{aligned}
& r_{11}^{2}+r_{21}^{2}+r_{31}^{2}=1, \\
& r_{12}^{2}+r_{22}^{2}+r_{32}^{2}=1, \\
& r_{13}^{2}+r_{23}^{2}+r_{33}^{2}=1
\end{aligned}
$$

2. The orthogonality condition: $\hat{x}_{b} \cdot \hat{y}_{b}=\hat{x}_{b} \cdot \hat{z}_{b}=\hat{y}_{b} \cdot \hat{z}_{b}=0$

$$
\begin{aligned}
& r_{11} r_{12}+r_{21} r_{22}+r_{31} r_{32}=0 \\
& r_{11} r_{13}+r_{21} r_{23}+r_{31} r_{33}=0 \\
& r_{12} r_{13}+r_{22} r_{23}+r_{32} r_{33}=0
\end{aligned}
$$

- These six constraints can be expressed more compactly as a single set of constraints on R,

$$
R^{T} R=I
$$

- The frame is right-handed if $\hat{x}_{b} \times \hat{y}_{b}=\hat{z}_{b}$, and the left-handed if $\hat{x}_{b} \times \hat{y}_{b}=-\hat{z}_{b}$. Thus it can be
obtained by using the determinant

$$
\begin{array}{llll}
\operatorname{det} R=1 & \leftarrow & \operatorname{det} R=\hat{z}_{b}^{T}\left(\hat{x}_{b} \times \hat{y}_{b}\right)=\hat{z}_{b}^{T} \hat{z}_{b}=1 & \text { right-handed } \\
\operatorname{det} R=-1 & \leftarrow & \operatorname{det} R=\hat{z}_{b}^{T}\left(\hat{x}_{b} \times \hat{y}_{b}\right)=-\hat{z}_{b}^{T} \hat{z}_{b}=-1 & \text { left-handed }
\end{array}
$$

Definition 3.1. The special orthogonal group $S O(3)$, also known as the group of rotation matrices, is the set of all 3×3 real matrices R that satisfy

1. $R^{T} R=I$
2. $\operatorname{det} R=1$

Definition 3.2. The special orthogonal group $S O(2)$ is the set of all 2×2 real matrices R that satisfy

1. $R^{T} R=I$
2. $\operatorname{det} R=1$

From the definition it follows that every $R \in S O(2)$ can be written

$$
R=\left[\begin{array}{ll}
r_{11} & r_{12} \\
r_{21} & r_{22}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

where $\theta \in[0,2 \pi)$.

Properties of Rotation Matrices

- The sets of rotation matrices $S O(2)$ and $S O(3)$ are called groups because they satisfy the properties required of a mathematical group.
- Specifically, a group consists of a set of elements and an operation on two elements (matrix multiplication for $S O(n)$) such that, for all A, B in the group, the following properties are satisfied:
- closure: $A B$ is also in the group.
- associativity: $(A B) C=A(B C)$.
- identity element existence: There exists an element I in the group.
- inverse element existence: \exists an element A^{-1} in the group $\ni A A^{-1}=A^{-1} A=I$.
- More specifically, $S O(n)$ groups are also called matrix Lie groups (where "Lie" is pronounced "Lee") because the elements of the group form a differentiable manifold.

Proposition 3.1. The inverse of a rotation matrix $R \in S O(3)$ is also a rotation matrix, and it is equal to the transpose of R, i.e., $R^{-1}=R^{T}$.

Proposition 3.2. The product of two rotation matrices is a rotation matrix.
Proposition 3.3. Multiplication of rotation matrices is associative, $\left(R_{1} R_{2}\right) R_{3}=R_{1}\left(R_{2} R_{3}\right)$, but generally not commutative, $R_{1} R_{2} \neq R_{2} R_{1}$.

Proposition 3.4. For any vector $x \in \Re^{3}$ and $R \in S O(3)$, the vector $y=R x$ has the same length as x.

Uses of Rotation Matrices

p ${ }^{\bullet}$
Figure 3.7: The same space and the same point p represented in three different frames with different orientations.

There are three major uses for a rotation matrix R :

1. to represent an orientation;
2. to change the reference frame in which a vector or a frame is represented; (operator)
3. to rotate a vector or a frame. (operator)

For a point p in the space, if a fixed space frame $\{s\}$ is aligned with $\{a\}$, then the orientations of the three frames relative to $\{s\}$ and the location of the point p in these frames can be written

$$
R_{a}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad R_{b}=\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \quad R_{c}=\left[\begin{array}{ccc}
0 & -1 & 0 \\
0 & 0 & -1 \\
1 & 0 & 0
\end{array}\right] \quad p_{a}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \quad p_{b}=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right] \quad p_{c}=\left[\begin{array}{c}
0 \\
-1 \\
-1
\end{array}\right]
$$

Note that $\{\mathrm{b}\}$ is obtained by rotating $\{\mathrm{a}\}$ about \hat{z}_{a} by 90°, and $\{\mathrm{c}\}$ is obtained by rotating $\{\mathrm{b}\}$ about \hat{y}_{b} by -90°.

Representing an orientation

p ${ }^{\bullet}$
Figure 3.7: The same space and the same point p represented in three different
frames with different orientations.

- When we write R_{c}, we are implicitly referring to the orientation of frame $\{\mathbf{c}\}$ relative to the fixed frame $\{\mathrm{s}\}$.
- Its more explicit form is $R_{s c}$: we are representing the frame $\{c\}$ of the second subscript relative to the frame $\{s\}$ of the first subscript. For example, $R_{b c}$ is the orientation of $\{c\}$ relative to $\{b\}$.
- If there is no possibility of confusion regarding the frames involved, we may simply write R.
- Inspecting Figure 3.7, we see that

$$
R_{a c}=\left[\begin{array}{ccc}
0 & -1 & 0 \\
0 & 0 & -1 \\
1 & 0 & 0
\end{array}\right] \quad R_{c a}=\left[\begin{array}{ccc}
0 & 0 & 1 \\
-1 & 0 & 0 \\
0 & -1 & 0
\end{array}\right]
$$

- A simple calculation shows that $R_{a c} R_{c a}=I$; that is, $R_{a c}=R_{c a}^{-1}$ or, equivalently, from Proposition 3.3, $R_{a c}=R_{c a}^{T}$.
- In fact, for any two frames $\{d\}$ and $\{e\}$,

$$
R_{d e}=R_{e d}^{-1}=R_{e d}^{T}
$$

Changing the reference frame

Figure 3.7: The same space and the same point p represented in three different
frames with different orientations.

- The rotation matrix $R_{a b}$ represents the orientation of $\{\mathbf{b}\}$ in $\{\mathbf{a}\}$, and $R_{b c}$ represents the orientation of $\{c\}$ in $\{b\}$.
- A straightforward calculation shows that the orientation of $\{c\}$ in $\{a\}$ can be computed as

$$
R_{a c}=R_{a b} R_{b c}
$$

where $R_{a b}$ acts like an operator that changes the reference frame from $\{\mathrm{b}\}$ to $\{\mathrm{a}\}$ and $R_{b c}$ is a representation of the orientation.

$$
R_{a c}=R_{a b} R_{b c}=\text { change reference frame from }\{\mathbf{b}\} \text { to }\{\mathbf{a}\}\left(R_{b c}\right) .
$$

- Subscript cancellation rule

$$
\begin{aligned}
R_{a b} R_{b c} & =R_{a b} R_{b c c}=R_{a c} . \\
R_{a b} p_{b} & =R_{a b} p_{b}=p_{a}
\end{aligned}
$$

where the reference frame of a vector can be changed by a rotation matrix using the subscript cancellation rule.

Rotating a vector or a frame

Figure 3.8: A coordinate frame with axes $\{\hat{x}, \hat{y}, \hat{z}\}$ is rotated by θ about a unit axis $\hat{\omega}$ (which is aligned with $-\hat{y}$ in this figure). The orientation of the final frame, with axes $\left\{\hat{\mathbf{x}}^{\prime}, \hat{\mathbf{y}}^{\prime}, \hat{\mathbf{z}}^{\prime}\right\}$, is written as R relative to the original frame.

- Figure 3.8 shows a frame $\{\mathrm{c}\}$ initially aligned with $\{\mathrm{s}\}$ with axes $\{\hat{x}, \hat{y}, \hat{z}\}$.
- If we rotate the frame $\{c\}$ about a unit axis $\hat{\omega}$ by an amount θ, the new frame, $\left\{c^{\prime}\right\}$ has coordinate axes $\left\{\hat{x}^{\prime}, \hat{y}^{\prime}, \hat{z}^{\prime}\right\}$. The rotation matrix $R=R_{s c^{\prime}}$ represents the orientation of $\left\{\mathbf{c}^{\prime}\right\}$ relative to $\{\mathrm{s}\}$.
- Emphasizing our view of R as a rotation operator, we can write for $\hat{\omega}=\left(\hat{\omega}_{1}, \hat{\omega}_{2}, \hat{\omega}_{3}\right)$

$$
R=\operatorname{Rot}(\hat{\omega}, \theta)=\left[\begin{array}{ccc}
c_{\theta}+\hat{\omega}_{1}^{2}\left(1-c_{\theta}\right) & \hat{\omega}_{1} \hat{\omega}_{2}\left(1-c_{\theta}\right)-\hat{\omega}_{3} s_{\theta} & \hat{\omega}_{1} \hat{\omega}_{3}\left(1-c_{\theta}\right)+\hat{\omega}_{2} s_{\theta} \\
\hat{\omega}_{1} \hat{\omega}_{2}\left(1-c_{\theta}\right)+\hat{\omega}_{3} s_{\theta} & c_{\theta}+\hat{\omega}_{2}^{2}\left(1-c_{\theta}\right) & \hat{\omega}_{2} \hat{\omega}_{3}\left(1-c_{\theta}\right)-\hat{\omega}_{1} s_{\theta} \\
\hat{\omega}_{1} \hat{\omega}_{3}\left(1-c_{\theta}\right)-\hat{\omega}_{2} s_{\theta} & \hat{\omega}_{2} \hat{\omega}_{3}\left(1-c_{\theta}\right)+\hat{\omega}_{1} s_{\theta} & c_{\theta}+\hat{\omega}_{3}^{2}\left(1-c_{\theta}\right)
\end{array}\right]
$$

where $s_{\theta}=\sin \theta$ and $c_{\theta}=\cos \theta$. Note that $\operatorname{Rot}(\hat{\omega}, \theta)=\operatorname{Rot}(-\hat{\omega},-\theta)$.

- Typical examples of rotation operations about coordinate frame axes are

$$
\operatorname{Rot}(\hat{x}, \theta)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right] \quad \operatorname{Rot}(\hat{y}, \theta)=\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right] \quad \operatorname{Rot}(\hat{z}, \theta)=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Figure 3.9: (Top) The rotation operator $R=\operatorname{Rot}\left(\hat{z}, 90^{\circ}\right)$ gives the orientation of the right-hand frame in the left-hand frame. (Bottom) On the left are shown a fixed frame $\{\mathrm{s}\}$ and a body frame $\{\mathrm{b}\}$, which can be expressed as $R_{s b}$. The quantity $R R_{s b}$ rotates $\{\mathrm{b}\}$ by 90° about the fixed-frame axis $\hat{\mathrm{z}}_{\mathrm{s}}$ to $\left\{\mathrm{b}^{\prime}\right\}$. The quantity $R_{s b} R$ rotates $\{b\}$ by 90° about the body-frame axis $\hat{\mathrm{z}}_{\mathrm{b}}$ to $\left\{\mathrm{b}^{\prime \prime}\right\}$.

- To specify whether the axis of rotation is expressed in $\{s\}$ or $\{b\}$, let us $\{b\}$ be the new frame after a rotation by θ about $\hat{\omega}_{s}=\hat{\omega}$ and $\{b "\}$ be the new frame after a rotation by θ about $\hat{\omega}_{b}=\hat{\omega}$
- Representations of these new frames can be calculated as

$$
\begin{aligned}
& R_{s b^{\prime}}=\text { rotate by } R \text { in }\{\mathrm{s}\} \text { frame }\left(R_{s b}\right)=R R_{s b} \\
& R_{s b^{\prime \prime}}=\text { rotate by } R \text { in }\{\mathrm{b}\} \text { frame }\left(R_{s b}\right)=R_{s b} R
\end{aligned}
$$

- Premultiplying by $R=\operatorname{Rot}(\hat{\omega}, \theta)$ yields a rotation about an axis $\hat{\omega}$ considered to be in the fixed frame, and postmultiplying by R yields a rotation about $\hat{\omega}$ considered as being in the body frame.

