2 Rotations and Angular Velocities

2.1 Rotation Matrices

• Among nine entries in the rotation matrix R, only three can be chosen independently.

1. The unit norm condition: $\hat{x}_b, \hat{y}_b, \hat{z}_b$ are all unit vectors, i.e.,

$$\begin{aligned} r_{11}^2 + r_{21}^2 + r_{31}^2 &= 1, \\ r_{12}^2 + r_{22}^2 + r_{32}^2 &= 1, \\ r_{13}^2 + r_{23}^2 + r_{33}^2 &= 1 \end{aligned}$$

2. The orthogonality condition: $\hat{x}_b \cdot \hat{y}_b = \hat{x}_b \cdot \hat{z}_b = \hat{y}_b \cdot \hat{z}_b = 0$

$$r_{11}r_{12} + r_{21}r_{22} + r_{31}r_{32} = 0$$

$$r_{11}r_{13} + r_{21}r_{23} + r_{31}r_{33} = 0$$

$$r_{12}r_{13} + r_{22}r_{23} + r_{32}r_{33} = 0$$

• These six constraints can be expressed more compactly as a single set of constraints on R,

$$R^T R = I$$

• The frame is right-handed if $\hat{x}_b \times \hat{y}_b = \hat{z}_b$, and the left-handed if $\hat{x}_b \times \hat{y}_b = -\hat{z}_b$. Thus it can be

obtained by using the determinant

det R = 1 \leftarrow det $R = \hat{z}_b^T(\hat{x}_b \times \hat{y}_b) = \hat{z}_b^T \hat{z}_b = 1$ right-handed det R = -1 \leftarrow det $R = \hat{z}_b^T(\hat{x}_b \times \hat{y}_b) = -\hat{z}_b^T \hat{z}_b = -1$ left-handed

Definition 3.1. The special orthogonal group SO(3), also known as the group of rotation matrices, is the set of all 3×3 real matrices R that satisfy

- **1.** $R^T R = I$
- **2.** det R = 1

Definition 3.2. The special orthogonal group SO(2) is the set of all 2×2 real matrices R that satisfy

- **1.** $R^T R = I$
- **2.** det R = 1

From the definition it follows that every $R \in SO(2)$ can be written

$$R = \begin{bmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

where $\theta \in [0, 2\pi)$.

Properties of Rotation Matrices

- The sets of rotation matrices SO(2) and SO(3) are called groups because they satisfy the properties required of a mathematical group.
- Specifically, a group consists of a set of elements and an operation on two elements (matrix multiplication for SO(n)) such that, for all A, B in the group, the following properties are satisfied:
 - closure: *AB* is also in the group.
 - associativity: (AB)C = A(BC).
 - identity element existence: There exists an element I in the group.
 - inverse element existence: \exists an element A^{-1} in the group $\ni AA^{-1} = A^{-1}A = I$.
- More specifically, SO(n) groups are also called matrix Lie groups (where "Lie" is pronounced "Lee") because the elements of the group form a differentiable manifold.

Proposition 3.1. The inverse of a rotation matrix $R \in SO(3)$ is also a rotation matrix, and it is equal to the transpose of R, i.e., $R^{-1} = R^T$.

Proposition 3.2. The product of two rotation matrices is a rotation matrix.

Proposition 3.3. Multiplication of rotation matrices is associative, $(R_1R_2)R_3 = R_1(R_2R_3)$, but generally not commutative, $R_1R_2 \neq R_2R_1$.

Proposition 3.4. For any vector $x \in \Re^3$ and $R \in SO(3)$, the vector y = Rx has the same length as x.

Uses of Rotation Matrices

Figure 3.7: The same space and the same point p represented in three different frames with different orientations.

There are three major uses for a rotation matrix R:

- 1. to represent an orientation;
- 2. to change the reference frame in which a vector or a frame is represented; (operator)
- 3. to rotate a vector or a frame. (operator)

For a point p in the space, if a fixed space frame $\{s\}$ is aligned with $\{a\}$, then the orientations of the three frames relative to $\{s\}$ and the location of the point p in these frames can be written

$$R_{a} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad R_{b} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad R_{c} = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{bmatrix} \qquad p_{a} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \qquad p_{b} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \qquad p_{c} = \begin{bmatrix} 0 \\ -1 \\ -1 \end{bmatrix}$$

Note that {b} is obtained by rotating {a} about \hat{z}_a by 90°, and {c} is obtained by rotating {b} about \hat{y}_b by -90° .

Representing an orientation

Figure 3.7: The same space and the same point p represented in three different frames with different orientations.

- When we write R_c , we are implicitly referring to the orientation of frame $\{c\}$ relative to the fixed frame $\{s\}$.
- Its more explicit form is R_{sc} : we are representing the frame {c} of the second subscript relative to the frame {s} of the first subscript. For example, R_{bc} is the orientation of {c} relative to {b}.
- If there is no possibility of confusion regarding the frames involved, we may simply write R.
- Inspecting Figure 3.7, we see that

- A simple calculation shows that $R_{ac}R_{ca} = I$; that is, $R_{ac} = R_{ca}^{-1}$ or, equivalently, from Proposition 3.3, $R_{ac} = R_{ca}^{T}$.
- In fact, for any two frames $\{d\}$ and $\{e\}$,

$$R_{de} = R_{ed}^{-1} = R_{ed}^T$$

Changing the reference frame

Figure 3.7: The same space and the same point p represented in three different frames with different orientations.

- The rotation matrix R_{ab} represents the orientation of $\{b\}$ in $\{a\}$, and R_{bc} represents the orientation of $\{c\}$ in $\{b\}$.
- A straightforward calculation shows that the orientation of $\{c\}$ in $\{a\}$ can be computed as

$$R_{ac} = R_{ab}R_{bc}$$

where R_{ab} acts like an operator that changes the reference frame from {b} to {a} and R_{bc} is a representation of the orientation.

$$R_{ac} = R_{ab}R_{bc}$$
 = change reference frame from {b} to {a} (R_{bc})

• Subscript cancellation rule

$$R_{ab}R_{bc} = R_{ab}R_{bc} = R_{ac}.$$
$$R_{ab}p_b = R_{ab}p_b = p_a$$

where the reference frame of a vector can be changed by a rotation matrix using the subscript cancellation rule.

Rotating a vector or a frame

Figure 3.8: A coordinate frame with axes $\{\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{z}}\}$ is rotated by θ about a unit axis $\hat{\omega}$ (which is aligned with $-\hat{\mathbf{y}}$ in this figure). The orientation of the final frame, with axes $\{\hat{\mathbf{x}}', \hat{\mathbf{y}}', \hat{\mathbf{z}}'\}$, is written as R relative to the original frame.

- Figure 3.8 shows a frame $\{c\}$ initially aligned with $\{s\}$ with axes $\{\hat{x}, \hat{y}, \hat{z}\}$.
- If we rotate the frame {c} about a unit axis ŵ by an amount θ, the new frame, {c'} has coordinate axes {x', ŷ', z'}. The rotation matrix R = R_{sc'} represents the orientation of {c'} relative to {s}.
- Emphasizing our view of R as a rotation operator, we can write for $\hat{\omega} = (\hat{\omega}_1, \hat{\omega}_2, \hat{\omega}_3)$

$$R = Rot(\hat{\omega}, \theta) = \begin{bmatrix} c_{\theta} + \hat{\omega}_{1}^{2}(1 - c_{\theta}) & \hat{\omega}_{1}\hat{\omega}_{2}(1 - c_{\theta}) - \hat{\omega}_{3}s_{\theta} & \hat{\omega}_{1}\hat{\omega}_{3}(1 - c_{\theta}) + \hat{\omega}_{2}s_{\theta} \\ \hat{\omega}_{1}\hat{\omega}_{2}(1 - c_{\theta}) + \hat{\omega}_{3}s_{\theta} & c_{\theta} + \hat{\omega}_{2}^{2}(1 - c_{\theta}) & \hat{\omega}_{2}\hat{\omega}_{3}(1 - c_{\theta}) - \hat{\omega}_{1}s_{\theta} \\ \hat{\omega}_{1}\hat{\omega}_{3}(1 - c_{\theta}) - \hat{\omega}_{2}s_{\theta} & \hat{\omega}_{2}\hat{\omega}_{3}(1 - c_{\theta}) + \hat{\omega}_{1}s_{\theta} & c_{\theta} + \hat{\omega}_{3}^{2}(1 - c_{\theta}) \end{bmatrix}$$

where $s_{\theta} = \sin \theta$ and $c_{\theta} = \cos \theta$. Note that $Rot(\hat{\omega}, \theta) = Rot(-\hat{\omega}, -\theta)$.

• Typical examples of rotation operations about coordinate frame axes are

$$Rot(\hat{x},\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix} \qquad Rot(\hat{y},\theta) = \begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{bmatrix} \qquad Rot(\hat{z},\theta) = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Figure 3.9: (Top) The rotation operator $R = \operatorname{Rot}(\hat{z}, 90^{\circ})$ gives the orientation of the right-hand frame in the left-hand frame. (Bottom) On the left are shown a fixed frame {s} and a body frame {b}, which can be expressed as R_{sb} . The quantity RR_{sb} rotates {b} by 90° about the fixed-frame axis \hat{z}_s to {b'}. The quantity $R_{sb}R$ rotates {b} by 90° about the body-frame axis \hat{z}_b to {b''}.

- To specify whether the axis of rotation is expressed in {s} or {b}, let us {b'} be the new frame after a rotation by θ about $\hat{\omega}_s = \hat{\omega}$ and {b''} be the new frame after a rotation by θ about $\hat{\omega}_b = \hat{\omega}$
- Representations of these new frames can be calculated as

$$R_{sb'}$$
 = rotate by R in {s} frame $(R_{sb}) = RR_{sb}$
 $R_{sb''}$ = rotate by R in {b} frame $(R_{sb}) = R_{sb}R$

• Premultiplying by $R = Rot(\hat{\omega}, \theta)$ yields a rotation about an axis $\hat{\omega}$ considered to be in the fixed frame, and postmultiplying by R yields a rotation about $\hat{\omega}$ considered as being in the body frame.