
2 Rotations and Angular Velocities

2.1 Rotation Matrices
• Among nine entries in the rotation matrix R, only three can be chosen independently.

1. The unit norm condition: x̂b, ŷb, ẑb are all unit vectors, i.e.,

r211 + r221 + r231 = 1,

r212 + r222 + r232 = 1,

r213 + r223 + r233 = 1

2. The orthogonality condition: x̂b · ŷb = x̂b · ẑb = ŷb · ẑb = 0

r11r12 + r21r22 + r31r32 = 0

r11r13 + r21r23 + r31r33 = 0

r12r13 + r22r23 + r32r33 = 0

• These six constraints can be expressed more compactly as a single set of constraints on R,

RTR = I

• The frame is right-handed if x̂b × ŷb = ẑb, and the left-handed if x̂b × ŷb = −ẑb. Thus it can be
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obtained by using the determinant

detR = 1 ← detR = ẑTb (x̂b × ŷb) = ẑTb ẑb = 1 right-handed

detR = −1 ← detR = ẑTb (x̂b × ŷb) = −ẑTb ẑb = −1 left-handed

Definition 3.1. The special orthogonal group SO(3), also known as the group of rotation matrices, is
the set of all 3× 3 real matrices R that satisfy

1. RTR = I

2. detR = 1

Definition 3.2. The special orthogonal group SO(2) is the set of all 2× 2 real matrices R that satisfy

1. RTR = I

2. detR = 1

From the definition it follows that every R ∈ SO(2) can be written

R =

[
r11 r12

r21 r22

]
=

[
cos θ − sin θ

sin θ cos θ

]

where θ ∈ [0, 2π).
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Properties of Rotation Matrices

• The sets of rotation matrices SO(2) and SO(3) are called groups because they satisfy the proper-
ties required of a mathematical group.

• Specifically, a group consists of a set of elements and an operation on two elements (matrix mul-
tiplication for SO(n)) such that, for all A, B in the group, the following properties are satisfied:

– closure: AB is also in the group.
– associativity: (AB)C = A(BC).
– identity element existence: There exists an element I in the group.
– inverse element existence: ∃ an element A−1 in the group ∋ AA−1 = A−1A = I.

• More specifically, SO(n) groups are also called matrix Lie groups (where “Lie” is pronounced “Lee”)
because the elements of the group form a differentiable manifold.

Proposition 3.1. The inverse of a rotation matrix R ∈ SO(3) is also a rotation matrix, and it is equal
to the transpose of R, i.e., R−1 = RT .

Proposition 3.2. The product of two rotation matrices is a rotation matrix.

Proposition 3.3. Multiplication of rotation matrices is associative, (R1R2)R3 = R1(R2R3), but generally
not commutative, R1R2 ̸= R2R1.

Proposition 3.4. For any vector x ∈ ℜ3 and R ∈ SO(3), the vector y = Rx has the same length as x.
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Uses of Rotation Matrices

There are three major uses for a rotation matrix R:

1. to represent an orientation;

2. to change the reference frame in which a vector or a frame is represented; (operator)

3. to rotate a vector or a frame. (operator)

For a point p in the space, if a fixed space frame {s} is aligned with {a}, then the orientations of the
three frames relative to {s} and the location of the point p in these frames can be written

Ra =


1 0 0

0 1 0

0 0 1

 Rb =


0 −1 0

1 0 0

0 0 1

 Rc =


0 −1 0

0 0 −1
1 0 0

 pa =


1

1

0

 pb =


1

−1
0

 pc =


0

−1
−1


Note that {b} is obtained by rotating {a} about ẑa by 90◦, and {c} is obtained by rotating {b} about ŷb
by −90◦.
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Representing an orientation

• When we write Rc, we are implicitly referring to the orientation of frame {c} relative to the fixed
frame {s}.

• Its more explicit form is Rsc: we are representing the frame {c} of the second subscript relative
to the frame {s} of the first subscript. For example, Rbc is the orientation of {c} relative to {b}.

• If there is no possibility of confusion regarding the frames involved, we may simply write R.

• Inspecting Figure 3.7, we see that

Rac =


0 −1 0

0 0 −1
1 0 0

 Rca =


0 0 1

−1 0 0

0 −1 0


• A simple calculation shows that RacRca = I; that is, Rac = R−1ca or, equivalently, from Proposition

3.3, Rac = RT
ca.

• In fact, for any two frames {d} and {e},

Rde = R−1ed = RT
ed.
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Changing the reference frame

• The rotation matrix Rab represents the orientation of {b} in {a}, and Rbc represents the orienta-
tion of {c} in {b}.

• A straightforward calculation shows that the orientation of {c} in {a} can be computed as

Rac = RabRbc

where Rab acts like an operator that changes the reference frame from {b} to {a} and Rbc is a
representation of the orientation.

Rac = RabRbc = change reference frame from {b} to {a} (Rbc).

• Subscript cancellation rule

RabRbc = Ra�b
R

�bc
= Rac.

Rabpb = Ra�b
p
�b
= pa

where the reference frame of a vector can be changed by a rotation matrix using the subscript
cancellation rule.
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Rotating a vector or a frame

• Figure 3.8 shows a frame {c} initially aligned with {s} with axes {x̂, ŷ, ẑ}.

• If we rotate the frame {c} about a unit axis ω̂ by an amount θ, the new frame, {c’} has coordinate
axes {x̂′, ŷ′, ẑ′}. The rotation matrix R = Rsc′ represents the orientation of {c’} relative to {s}.

• Emphasizing our view of R as a rotation operator, we can write for ω̂ = (ω̂1, ω̂2, ω̂3)

R = Rot(ω̂, θ) =


cθ + ω̂2

1(1− cθ) ω̂1ω̂2(1− cθ)− ω̂3sθ ω̂1ω̂3(1− cθ) + ω̂2sθ

ω̂1ω̂2(1− cθ) + ω̂3sθ cθ + ω̂2
2(1− cθ) ω̂2ω̂3(1− cθ)− ω̂1sθ

ω̂1ω̂3(1− cθ)− ω̂2sθ ω̂2ω̂3(1− cθ) + ω̂1sθ cθ + ω̂2
3(1− cθ)


where sθ = sin θ and cθ = cos θ. Note that Rot(ω̂, θ) = Rot(−ω̂,−θ).

• Typical examples of rotation operations about coordinate frame axes are

Rot(x̂, θ) =


1 0 0

0 cos θ − sin θ

0 sin θ cos θ

 Rot(ŷ, θ) =


cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 Rot(ẑ, θ) =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1
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• To specify whether the axis of rotation is expressed in {s} or {b}, let us {b’} be the new frame
after a rotation by θ about ω̂s = ω̂ and {b”} be the new frame after a rotation by θ about ω̂b = ω̂

• Representations of these new frames can be calculated as

Rsb′ = rotate by R in {s} frame (Rsb) = RRsb

Rsb′′ = rotate by R in {b} frame (Rsb) = RsbR

• Premultiplying by R = Rot(ω̂, θ) yields a rotation about an axis ω̂ considered to be in the fixed
frame, and postmultiplying by R yields a rotation about ω̂ considered as being in the body frame.
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