## 제3장

## **Rigid-Body Motions**

- In the previous chapter, we have seen that a minimum of six numbers is needed to specify the position and orientation of a rigid body in three-dimensional physical space.
- In this chapter, we develop a systematic way to describe a rigid body's position and orientation which relies on attaching a reference frame to the body.
- The configuration of this frame w.r.t. a fixed reference frame is represented as a  $4 \times 4$  matrix.  $\rightarrow$  This matrix is an example of an implicit representation of the C-space.
- The actual six-dimensional space of rigid-body configuration is obtained by applying ten constraints to the 16-dimensional space of  $4 \times 4$  real matices.
- For this purpose, this chapter has suggested
  - exponential coordinates (six-parameter representation of the configuration)
  - free vector (a geometric quantity with a length and a direction, but it is not rooted anywhere)
  - coordinate-free (when it does not have any coordinate frame)
  - spatial velocity or twist
  - spatial force or wrench



**Figure 3.1:** The point p exists in physical space, and it does not care how we represent it. If we fix a reference frame {a}, with unit coordinate axes  $\hat{x}_a$  and  $\hat{y}_a$ , we can represent p as  $p_a = (1, 2)$ . If we fix a reference frame {b} at a different location, a different orientation, and a different length scale, we can represent p as  $p_b = (4, -2)$ .

- A coordinate-free point p in physical space can be represented as a vector  $p \in \Re^n$  from the reference frame.
- A different choice of reference frame and length scale for physical space leads to a different representation p ∈ ℜ<sup>n</sup> for the same point p in physical space, for example, p<sub>a</sub> in {a} reference frame and p<sub>b</sub> in {b} frame.
- Space frame, denoted {s}, has been defined as a fixed frame. For example, it might be attached to a corner of a room.
- Body frame, denoted {b}, is the stationary frame that is coincident with the moving body-attached frame at any instant. It may be chosen at the mass center of the moving rigid body.
- For simplicity, we will usually refer to a body frame {b} as a frame attached to a moving rigid body.



**Figure 3.2:** (Left) The  $\hat{x}$ ,  $\hat{y}$ , and  $\hat{z}$  axes of a right-handed reference frame are aligned with the index finger, middle finger, and thumb of the right hand, respectively. (Right) A positive rotation about an axis is in the direction in which the fingers of the right hand curl when the thumb is pointed along the axis.

- All reference frames are right-handed.
- If index finger is aligned with  $\hat{x}$ -axis and middle finger is aligned with  $\hat{y}$ -axis, then  $\hat{z}$ -axis is defined as thumb direction that the fingers of the right hand curl.

## **1 Rigid-Body Motions in the Plane**



Figure 3.3: The body frame {b} is expressed in the fixed-frame coordinates {s} by the vector p and the directions of the unit axes  $\hat{x}_b$  and  $\hat{y}_b$ . In this example, p = (2, 1) and  $\theta = 60^\circ$ , so  $\hat{x}_b = (\cos \theta, \sin \theta) = (0.5, 1/\sqrt{2})$  and  $\hat{y}_b = (-\sin \theta, \cos \theta) = (-1/\sqrt{2}, 0.5)$ .

- Suppose that a length scale and a fixed reference frame  $\{s\}$  have been chosen with unit axes  $\hat{x}_s$  and  $\hat{y}_s$  as unit vectors.
- Similarly, we attach a reference frame with unit axes  $\hat{x}_b$  and  $\hat{y}_b$  to the planar body by using the body frame denoted  $\{b\}$  as a frame attached to a moving body.
- The body-frame origin p can be expressed in terms of the coordinate axes of  $\{s\}$  as

$$p = p_x \hat{x}_s + p_y \hat{y}_s$$
$$= 2 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

The simplest way to describe the orientation of the body frame {b} relative to the fixed frame {s} is by specifying the angle θ

$$\hat{x}_b = \cos\theta \hat{x}_s + \sin\theta \hat{x}_y = \frac{1}{2} \begin{bmatrix} 1\\0 \end{bmatrix} + \frac{\sqrt{3}}{2} \begin{bmatrix} 0\\1 \end{bmatrix} = \begin{bmatrix} \frac{1}{2}\\\frac{\sqrt{3}}{2} \end{bmatrix}$$
$$\hat{y}_b = -\sin\theta \hat{x}_s + \cos\theta \hat{x}_y = -\frac{\sqrt{3}}{2} \begin{bmatrix} 1\\0 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 0\\1 \end{bmatrix} = \begin{bmatrix} -\frac{\sqrt{3}}{2}\\\frac{1}{2} \end{bmatrix}$$

• Assuming we agree to express everything in terms of  $\{s\}$ , the point p can be represented as a column vector  $p \in \Re^2$  of the form:

$$p = \begin{bmatrix} p_x \\ p_y \end{bmatrix}$$

and two vectors  $\hat{x}_b$  and  $\hat{y}_b$  can also be written as column vectors and packaged into the following  $2 \times 2$  rotation matrix P

$$P = \begin{bmatrix} \hat{x}_b & \hat{y}_b \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

- Although the rotation matrix P consists of four numbers, they are subject to three constraints (each column of P must be a unit vector, and the two columns must be orthogonal to each other), and the one remaining degree of freedom is parametrized by  $\theta$ .
- The pair (P, p) provides a description of the orientation and position of  $\{b\}$  relative to  $\{s\}$ .



**Figure 3.4:** The frame  $\{b\}$  in  $\{s\}$  is given by (P, p), and the frame  $\{c\}$  in  $\{b\}$  is given by (Q, q). From these we can derive the frame  $\{c\}$  in  $\{s\}$ , described by (R, r). The numerical values of the vectors p, q, and r and the coordinate-axis directions of the three frames are evident from the grid of unit squares.

- Expressing {b} in {s} as the pair (P, p), we have  $p = \begin{bmatrix} p_x \\ p_y \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$  and  $P = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ • Expressing {c} in {b} as the pair (Q, q),  $q = \begin{bmatrix} q_x \\ q_y \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$  and  $Q = \begin{bmatrix} \cos \psi & -\sin \psi \\ \sin \psi & \cos \psi \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$
- If we know (Q,q) (the configuration of  $\{c\}$  relative to  $\{b\}$ ) and (P,p) (the configuration of  $\{b\}$  relative to  $\{s\}$ ), we can compute the configuration of  $\{c\}$  relative to  $\{s\}$  as follows:

$$R = PQ = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$
 convert  $Q$  to the {s} frame  
$$r = Pq + p = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ -1 \end{bmatrix} + \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
 convert  $q$  to the {s} frame and vector-sum with  $p$ 

• Thus (P, p) not only represents a configuration of  $\{b\}$  in  $\{s\}$ ; it can also be used to convert the representation of a point or frame from  $\{b\}$  coordinates to  $\{s\}$  coordinates.



Figure 3.5: (a) The frame {d}, fixed to an elliptical rigid body and initially coincident with {s}, is displaced to {d'} (which is coincident with the stationary frame {b}), by first rotating according to P then translating according to p, where (P, p) is the representation of {b} in {s}. The same transformation takes the frame {c}, also attached to the rigid body, to {c'}. The transformation marked ① rigidly rotates {c} about the origin of {s}, and then transformation ② translates the frame by pexpressed in {s}. (b) Instead of viewing this displacement as a rotation followed by a translation, both rotation and translation can be performed simultaneously. The displacement can be viewed as a rotation of  $\beta = 90^{\circ}$  about a fixed point s.

- The rigid-body displacement (known as a rigid-body motion) is described by two sequential transformations, (ex) the rotation matrix-vector pair (R, r) of  $\{c\}$  is moved to new frame (R', r') of  $\{c'\}$ 
  - 1. transformation rotates  $\{c\}$  according to P: (ex) R' = PR
  - 2. transformation translates it by p in  $\{s\}$  : (ex) r' = Pr + p
- A rotation matrix-vector pair (P, p) can be used for three purpose:
  - 1. to represent a configuration of a rigid body in  $\{s\}$  (figure 3.3)
  - 2. to change the reference frame in which a vector or frame is represented (figure 3.4)
  - 3. to displace a vector or a frame (figure 3.5(a))

- Screw motion
  - Consider figure. 3.5(b), note that rigid-body motion, expressed as a rotation followed by a translation, can be obtained by simply rotating the body about a fixed point s by an angle  $\beta$ .
  - This is a planar example of a screw motion.
  - Displacement can be parametrized by three screw coordinates  $(\beta, s_x, s_y)$  in fixed frame  $\{s\}$ .
- Screw axis S
  - Rotating about s with a unit angular velocity  $\omega = 1rad/s$  means that a point at the origin of  $\{s\}$  frame moves at two units per second initially in the + $\hat{x}$ -direction of the  $\{s\}$  frame, i.e.,  $v = (v_x, v_y) = (2, 0)$ .
  - We can package these together in the three-vector  $S = (\omega, v_x, v_y) = (1, 2, 0)$ , for a representation of the screw axis.
- Exponential coordinates  $S\theta$ 
  - Following this screw axis for an angle  $\theta = \frac{\pi}{2}$  ( $\beta = \frac{\pi}{2}$  in the figure) yields the final displacement.
  - Thus we can represent the displacement using the three coordinates  $S\theta = (\frac{\pi}{2}, \pi, 0)$ .
  - These are called the exponential coordinates for the planar rigid-body displacement.
- Twist  $\mathcal{V} = \mathcal{S}\dot{\theta}$ 
  - To represent the combination of an angular and a linear velocity, called a twist, we take a screw axis  $S = (\omega, v_x, v_y)$ , where  $\omega = 1$ , and scale it by multiplying by some rotation speed,  $\dot{\theta}$
  - The twist is  $\mathcal{V} = S\dot{\theta}$
  - The net displacement obtained by rotating about the screw axis S by an angle  $\theta$  is equivalent to the displacement obtained by rotating about S at a speed  $\dot{\theta} = \theta$  for unit time, so  $\mathcal{V} = S\dot{\theta}$  can also be considered a set of exponential coordinates.

## Preview of the remainder of this chapter



Figure 3.6: Mathematical description of position and orientation.

- Consider a rigid body occupying three-dimensional physical space, as shown in Figure 3.6.
- Assume that both the fixed frame  $\{s\}$  and body frame  $\{b\}$  have been chosen together with a length scale for physical space.
- All reference frames are right-handed the unit axes  $\{\hat{x}, \hat{y}, \hat{z}\}$  always satisfy  $\hat{x} \times \hat{y} = \hat{z}$ .
- $\bullet$  In terms of the fixed-frame coordinates {s}, p can be expressed as

$$p = p_1 \hat{x}_s + p_2 \hat{y}_s + p_3 \hat{z}_s$$

The axes of the body frame  $\{b\}$  can also be expressed as

$$\hat{x}_{b} = r_{11}\hat{x}_{s} + r_{21}\hat{y}_{s} + r_{31}\hat{z}_{s}$$
$$\hat{y}_{b} = r_{12}\hat{x}_{s} + r_{22}\hat{y}_{s} + r_{32}\hat{z}_{s}$$
$$\hat{z}_{b} = r_{13}\hat{x}_{s} + r_{23}\hat{y}_{s} + r_{33}\hat{z}_{s}$$

• Defining  $p \in \Re^3$  and  $R \in \Re^{3 \times 3}$  as

$$p = \begin{bmatrix} p_1 \\ p_2 \\ p_3 \end{bmatrix} \qquad \qquad R = \begin{bmatrix} \hat{x}_b & \hat{y}_b & \hat{z}_b \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

- The 12 parameters given by (R, p) then provide a description of the position and orientation of the rigid body relative to the fixed frame.
- Since the orientation of a rigid body has three degrees of freedom, only three of the nine entries in *R* can be chosen independently.
- Every rigid-body displacement can be obtained by a finite rotation and translation about a fixed screw axis.