제 3 장

Rigid-Body Motions

- In the previous chapter, we have seen that a minimum of six numbers is needed to specify the position and orientation of a rigid body in three-dimensional physical space.
- In this chapter, we develop a systematic way to describe a rigid body's position and orientation which relies on attaching a reference frame to the body.
- The configuration of this frame w.r.t. a fixed reference frame is represented as a 4×4 matrix. \rightarrow This matrix is an example of an implicit representation of the C -space.
- The actual six-dimensional space of rigid-body configuration is obtained by applying ten constraints to the 16 -dimensional space of 4×4 real matices.
- For this purpose, this chapter has suggested
- exponential coordinates (six-parameter representation of the configuration)
- free vector (a geometric quantity with a length and a direction, but it is not rooted anywhere)
- coordinate-free (when it does not have any coordinate frame)
- spatial velocity or twist
- spatial force or wrench

Figure 3.1: The point p exists in physical space, and it does not care how we represent it. If we fix a reference frame $\{a\}$, with unit coordinate axes \hat{x}_{a} and $\hat{\mathrm{y}}_{\mathrm{a}}$, we can represent p as $p_{a}=(1,2)$. If we fix a reference frame $\{\mathrm{b}\}$ at a different location, a different orientation, and a different length scale, we can represent p as $p_{b}=(4,-2)$.

- A coordinate-free point p in physical space can be represented as a vector $p \in \Re^{n}$ from the reference frame.
- A different choice of reference frame and length scale for physical space leads to a different representation $p \in \Re^{n}$ for the same point p in physical space, for example, p_{a} in $\{\mathrm{a}\}$ reference frame and p_{b} in $\{\mathbf{b}\}$ frame.
- Space frame, denoted $\{s\}$, has been defined as a fixed frame. For example, it might be attached to a corner of a room.
- Body frame, denoted $\{b\}$, is the stationary frame that is coincident with the moving body-attached frame at any instant. It may be chosen at the mass center of the moving rigid body.
- For simplicity, we will usually refer to a body frame $\{b\}$ as a frame attached to a moving rigid body.

Figure 3.2: (Left) The \hat{x}, \hat{y}, and \hat{z} axes of a right-handed reference frame are aligned with the index finger, middle finger, and thumb of the right hand, respectively. (Right) A positive rotation about an axis is in the direction in which the fingers of the right hand curl when the thumb is pointed along the axis.

- All reference frames are right-handed.
- If index finger is aligned with \hat{x}-axis and middle finger is aligned with \hat{y}-axis, then \hat{z}-axis is defined as thumb direction that the fingers of the right hand curl.

1 Rigid-Body Motions in the Plane

Figure 3.3: The body frame $\{b\}$ is expressed in the fixed-frame coordinates $\{s\}$ by the vector p and the directions of the unit axes $\hat{\mathbf{x}}_{\mathrm{b}}$ and $\hat{\mathrm{y}}_{\mathrm{b}}$. In this example, $p=(2,1)$ and $\theta=60^{\circ}$, so $\hat{\mathrm{x}}_{\mathrm{b}}=(\cos \theta, \sin \theta)=(0.5,1 / \sqrt{2})$ and $\hat{\mathrm{y}}_{\mathrm{b}}=(-\sin \theta, \cos \theta)=(-1 / \sqrt{2}, 0.5)$.

- Suppose that a length scale and a fixed reference frame $\{\mathrm{s}\}$ have been chosen with unit axes \hat{x}_{s} and \hat{y}_{s} as unit vectors.
- Similarly, we attach a reference frame with unit axes \hat{x}_{b} and \hat{y}_{b} to the planar body by using the body frame denoted $\{b\}$ as a frame attached to a moving body.
- The body-frame origin p can be expressed in terms of the coordinate axes of $\{\mathrm{s}\}$ as

$$
\begin{aligned}
p & =p_{x} \hat{x}_{s}+p_{y} \hat{y}_{s} \\
& =2\left[\begin{array}{l}
1 \\
0
\end{array}\right]+1\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
\end{aligned}
$$

- The simplest way to describe the orientation of the body frame $\{b\}$ relative to the fixed frame $\{s\}$ is by specifying the angle θ

$$
\begin{aligned}
& \hat{x}_{b}=\cos \theta \hat{x}_{s}+\sin \theta \hat{x}_{y}=\frac{1}{2}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\frac{\sqrt{3}}{2}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} \\
\frac{\sqrt{3}}{2}
\end{array}\right] \\
& \hat{y}_{b}=-\sin \theta \hat{x}_{s}+\cos \theta \hat{x}_{y}=-\frac{\sqrt{3}}{2}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\frac{1}{2}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
-\frac{\sqrt{3}}{2} \\
\frac{1}{2}
\end{array}\right]
\end{aligned}
$$

- Assuming we agree to express everything in terms of $\{s\}$, the point p can be represented as a column vector $p \in \Re^{2}$ of the form:

$$
p=\left[\begin{array}{l}
p_{x} \\
p_{y}
\end{array}\right]
$$

and two vectors \hat{x}_{b} and \hat{y}_{b} can also be written as column vectors and packaged into the following 2×2 rotation matrix P

$$
P=\left[\begin{array}{ll}
\hat{x}_{b} & \hat{y}_{b}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

- Although the rotation matrix P consists of four numbers, they are subject to three constraints (each column of P must be a unit vector, and the two columns must be orthogonal to each other), and the one remaining degree of freedom is parametrized by θ.
- The pair (P, p) provides a description of the orientation and position of $\{\mathrm{b}\}$ relative to $\{\mathrm{s}\}$.

Figure 3.4: The frame $\{b\}$ in $\{s\}$ is given by (P, p), and the frame $\{c\}$ in $\{b\}$ is given by (Q, q). From these we can derive the frame $\{c\}$ in $\{s\}$, described by (R, r). The numerical values of the vectors p, q, and r and the coordinate-axis directions of the three frames are evident from the grid of unit squares.

- Expressing $\{b\}$ in $\{\mathbf{s}\}$ as the pair (P, p), we have $p=\left[\begin{array}{l}p_{x} \\ p_{y}\end{array}\right]=\left[\begin{array}{l}2 \\ 2\end{array}\right]$ and $P=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$
- Expressing $\{\mathbf{c}\}$ in $\{\mathbf{b}\}$ as the pair $(Q, q), q=\left[\begin{array}{l}q_{x} \\ q_{y}\end{array}\right]=\left[\begin{array}{c}-1 \\ -1\end{array}\right]$ and $Q=\left[\begin{array}{cc}\cos \psi & -\sin \psi \\ \sin \psi & \cos \psi\end{array}\right]=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$
- If we know (Q, q) (the configuration of $\{\mathbf{c}\}$ relative to $\{\mathbf{b}\}$) and (P, p) (the configuration of $\{\mathbf{b}\}$ relative to $\{s\}$), we can compute the configuration of $\{c\}$ relative to $\{s\}$ as follows:

$$
\begin{aligned}
& R=P Q=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right] \quad \text { convert } Q \text { to the }\{\mathrm{s}\} \text { frame } \\
& r=P q+p=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
-1 \\
-1
\end{array}\right]+\left[\begin{array}{l}
2 \\
2
\end{array}\right]=\left[\begin{array}{l}
3 \\
1
\end{array}\right] \quad \text { convert } q \text { to the }\{\mathbf{s}\} \text { frame and vector-sum with } p
\end{aligned}
$$

- Thus (P, p) not only represents a configuration of $\{\mathrm{b}\}$ in $\{\mathrm{s}\}$; it can also be used to convert the representation of a point or frame from $\{b\}$ coordinates to $\{s\}$ coordinates.

Figure 3.5: (a) The frame $\{d\}$, fixed to an elliptical rigid body and initially coincident with $\{s\}$, is displaced to $\left\{d^{\prime}\right\}$ (which is coincident with the stationary frame $\{b\}$), by first rotating according to P then translating according to p, where (P, p) is the representation of $\{b\}$ in $\{\mathrm{s}\}$. The same transformation takes the frame $\{\mathrm{c}\}$, also attached to the rigid body, to $\left\{\mathrm{c}^{\prime}\right\}$. The transformation marked (1) rigidly rotates $\{c\}$ about the origin of $\{\mathrm{s}\}$, and then transformation (2) translates the frame by p expressed in $\{\mathrm{s}\}$. (b) Instead of viewing this displacement as a rotation followed by a translation, both rotation and translation can be performed simultaneously. The displacement can be viewed as a rotation of $\beta=90^{\circ}$ about a fixed point s.

- The rigid-body displacement (known as a rigid-body motion) is described by two sequential transformations, (ex) the rotation matrix-vector pair (R, r) of $\{c\}$ is moved to new frame $\left(R^{\prime}, r^{\prime}\right)$ of $\left\{c^{\prime}\right\}$

1. transformation rotates $\{\mathrm{c}\}$ according to $P:(\mathrm{ex}) R^{\prime}=P R$
2. transformation translates it by p in $\{\mathbf{s}\}:(\mathrm{ex}) r^{\prime}=\operatorname{Pr}+p$

- A rotation matrix-vector pair (P, p) can be used for three purpose:

1. to represent a configuration of a rigid body in $\{\mathrm{s}\}$ (figure 3.3)
2. to change the reference frame in which a vector or frame is represented (figure 3.4)
3. to displace a vector or a frame (figure 3.5(a))

- Screw motion
- Consider figure. 3.5(b), note that rigid-body motion, expressed as a rotation followed by a translation, can be obtained by simply rotating the body about a fixed point s by an angle β.
- This is a planar example of a screw motion.
- Displacement can be parametrized by three screw coordinates $\left(\beta, s_{x}, s_{y}\right)$ in fixed frame $\{\mathbf{s}\}$.
- Screw axis \mathcal{S}
- Rotating about s with a unit angular velocity $\omega=1 \mathrm{rad} / \mathrm{s}$ means that a point at the origin of $\{\mathrm{s}\}$ frame moves at two units per second initially in the $+\hat{x}$-direction of the $\{\mathrm{s}\}$ frame, i.e., $v=\left(v_{x}, v_{y}\right)=(2,0)$.
- We can package these together in the three-vector $\mathcal{S}=\left(\omega, v_{x}, v_{y}\right)=(1,2,0)$, for a representation of the screw axis.
- Exponential coordinates $\mathcal{S} \theta$
- Following this screw axis for an angle $\theta=\frac{\pi}{2}$ ($\beta=\frac{\pi}{2}$ in the figure) yields the final displacement.
- Thus we can represent the displacement using the three coordinates $\mathcal{S} \theta=\left(\frac{\pi}{2}, \pi, 0\right)$.
- These are called the exponential coordinates for the planar rigid-body displacement.
- Twist $\mathcal{V}=\mathcal{S} \dot{\theta}$
- To represent the combination of an angular and a linear velocity, called a twist, we take a screw axis $\mathcal{S}=\left(\omega, v_{x}, v_{y}\right)$, where $\omega=1$, and scale it by multiplying by some rotation speed, $\dot{\theta}$
- The twist is $\mathcal{V}=S \dot{\theta}$
- The net displacement obtained by rotating about the screw axis \mathcal{S} by an angle θ is equivalent to the displacement obtained by rotating about \mathcal{S} at a speed $\dot{\theta}=\theta$ for unit time, so $\mathcal{V}=\mathcal{S} \dot{\theta}$ can also be considered a set of exponential coordinates.

Preview of the remainder of this chapter

Figure 3.6: Mathematical description of position and orientation.

- Consider a rigid body occupying three-dimensional physical space, as shown in Figure 3.6.
- Assume that both the fixed frame $\{s\}$ and body frame $\{b\}$ have been chosen together with a length scale for physical space.
- All reference frames are right-handed - the unit axes $\{\hat{x}, \hat{y}, \hat{z}\}$ always satisfy $\hat{x} \times \hat{y}=\hat{z}$.
- In terms of the fixed-frame coordinates $\{s\}, p$ can be expressed as

$$
p=p_{1} \hat{x}_{s}+p_{2} \hat{y}_{s}+p_{3} \hat{z}_{s}
$$

The axes of the body frame $\{b\}$ can also be expressed as

$$
\begin{aligned}
& \hat{x}_{b}=r_{11} \hat{x}_{s}+r_{21} \hat{y}_{s}+r_{31} \hat{z}_{s} \\
& \hat{y}_{b}=r_{12} \hat{x}_{s}+r_{22} \hat{y}_{s}+r_{32} \hat{z}_{s} \\
& \hat{z}_{b}=r_{13} \hat{x}_{s}+r_{23} \hat{y}_{s}+r_{33} \hat{z}_{s}
\end{aligned}
$$

- Defining $p \in \Re^{3}$ and $R \in \Re^{3 \times 3}$ as

$$
p=\left[\begin{array}{l}
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right] \quad R=\left[\begin{array}{lll}
\hat{x}_{b} & \hat{y}_{b} & \hat{z}_{b}
\end{array}\right]=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]
$$

- The 12 parameters given by (R, p) then provide a description of the position and orientation of the rigid body relative to the fixed frame.
- Since the orientation of a rigid body has three degrees of freedom, only three of the nine entries in R can be chosen independently.
- Every rigid-body displacement can be obtained by a finite rotation and translation about a fixed screw axis.

