
4 Motion Control with Torque or Force Inputs
• The robot-control engineers do not want to use the velocity-control modes for electric motors, be-

cause these velocity-control algorithms do not make use of a dynamic model of the robot.

• Instead, robot-control engineers use amplifiers in torque-control mode: the input to the amplifier
is the desired torque (or force).

• This allows the robot-control engineer to use a dynamic model of the robot in the design of the
control law.

• The controller generates joint torques and forces to try to track a desired trajectory in joint space
or task space.

292



4.1 Motion Control of a Single Joint

• Consider a single motor attached to a single link.

• Let ⌧ be the motor’s torque and ✓ be the angle of the link. The dynamics can be written as

M ✓̈ = ⌧ �mgr cos ✓ � b✓̇ ! ⌧ = M ✓̈ +mgr cos ✓ + b✓̇

where M is the scalar inertia of the link about the axis of rotation, m is the mass of the link, r
is the distance from the axis to the center of mass of the link, b is a viscous friction coefficient
due to bearing and transmission, and g � 0 is the gravitational acceleration.

• Also it may write more compactly as

⌧ = M ✓̈ + h(✓, ✓̇)

where h contains all terms that depend only on the state, not the acceleration.

293



Feedback Control: PID Control

• A common feedback controller is linear proportional-integral-derivative control, or PID control.
The PID controller is simply the PI controller with an added term proportional to the time deriva-
tive of the error,

⌧(t) = Kp✓e(t) +Ki

Z t

0
✓e(t)dt +Kd✓̇e(t)

where the control gains Kp, Ki, and Kd are positive.

• The proportional gain Kp acts as a virtual spring that tries to reduce the position error ✓e(t) =
✓d(t)� ✓(t).

• The derivative gain Kd acts as a virtual damper that tries to reduce the velocity error ✓̇e(t) =
✓̇d(t)� ✓̇(t).

• The integral gain can be used to reduce or eliminate steady-state errors.

294



PD Control and Second-Order Error Dynamics

• Consider the case where Ki = 0, and assume the robot moves in a horizontal plane (g = 0).

• Substituting the PD control law into the dynamics, we get

M ✓̈ + b✓̇ = Kp✓e +Kd✓̇e

• Take the set-point control task having ✓d = constant and ✓̇d = ✓̈d = 0, so ✓̈e = �✓̈ and ✓̇e = �✓̇

M ✓̈e + (b+Kd)✓̇e +Kp✓e = 0

• In the standard second-order form,

✓̈e +
(b+Kd)

M
✓̇e +

Kp

M
✓e = 0 � ✓̈e + 2⇣!n✓̇e + !2

n✓e = 0

where the damping ratio ⇣ and the natural frequency !n are

⇣ =
b+Kd

2
p

KpM
!n =

r
Kp

M

• Since the error dynamics equation is stable, the steady-state error is zero.

• For no overshoot and a fast response, the gains Kd and Kp should be chosen to satisfy critical
damping (⇣ = 1).

• For a fast response, Kp should be chosen to be as high as possible, subject to practical issues such
as actuator saturation and so on.

295



PID Control and Third-Order Error Dynamics

• Consider the case of setpoint control where the link moves in a vertical plane (g > 0).

• With the PD control law above, the error dynamics can now be written

M ✓̈e + (b+Kd)✓̇e +Kp✓e = mgr cos ✓

• At the steady-state,

Kp✓e = mgr cos ✓

The joint comes to rest at a configuration ✓ satisfying Kp✓e = mgr cos ✓, i.e., the final error ✓e is
nonzero.

• We can make this steady-state error small by increasing the gain Kp but, as discussed above,
there are practical limits.

296



• To eliminate the steady-state error, we return to the PID controller by setting Ki > 0. To see how
this works, write down the set-point error dynamics

M ✓̈e + (b+Kd)✓̇e +Kp✓e +Ki

Z
✓e(t)dt = ⌧dist

where it is noted that ⌧dist = mgr cos ✓ can be constant at the steady-state.

• Taking derivatives of both sides, we get the third-order error dynamics

M
...
✓ e + (b+Kd)✓̈e +Kp✓̇e +Ki✓e = ⌧̇dist = 0

• Its characteristic equation is

s3 +
b+Kd

M
s2 +

Kp

M
s+

Ki

M
= 0

• (Routh Stability Criterion) Necessary condition: M > 0 b > 0 Kp > 0 Kd > 0 Ki > 0
Sufficient condition: the first column should be positive

s3 : 1
Kp

M

s2 :
b+Kd

M

Ki

M

s1 :
Kp

M
� Ki

b+Kd

s0 :
Ki

M

297



As a result, the new gain Ki must satisfy both a lower and an upper bound

0 < Ki <
(b+Kd)Kp

M

• (Root Locus) After setting the critical damping ⇣ = 1, the characteristic equation is rearranged
into

s3 +
b+Kd

M
s2 +

Kp

M
s+

Ki

M
= 0 ! 1 +KiL(s) = 1 +Ki

1

s(s+ !n)2
= 0

where, use the matlab function rlocus if you are not good at the root locus method.

298



• In the case of actuator saturation due to integral control, integrator anti-windup places a limit
on how large the error integral is allowed to grow.

• Pseudocode for the PID control algorithm

• The PID controller applies well to trajectory following, but the integral control will not eliminate
tracking error along arbitrary trajectories.

299



Feedforward Plus Feedback Linearization

• Another strategy for trajectory following is to use a model of the robot’s dynamics to proactively
generate torques instead of waiting for errors.

⌧ = M(✓)✓̈ + h(✓, ✓̇) ! ⌧ = fM(✓d)✓̈d + eh(✓d, ✓̇d)

where fM,eh are models for M,h, respectively.

• All practical controllers use feedback + feedforward because a good model can be used to improve
performance and simplify analysis.

• Let us assign the desired error dynamics as

✓̈e +Kd✓̇e +Kp✓e +Ki

Z
✓e(t)dt = 0

and then let us choose the acceleration from the desired error dynamics:

✓̈ = ✓̈d +Kd✓̇e +Kp✓e +Ki

Z
✓e(t)dt

and finally let us apply the acceleration into the inverse dynamics equation

⌧ = fM(✓)✓̈ + eh(✓, ✓̇) ! ⌧ = fM(✓)

✓
✓̈d +Kd✓̇e +Kp✓e +Ki

Z
✓e(t)dt

◆
+ eh(✓, ✓̇)

This controller is called as the inverse dynamics controller or the computed torque controller.

• fM(✓) transforms the accelerations into the joint torques.

300



301



4.2 Motion Control of a Multi-joint Robot
• The methods applied above for a single-joint robot carry over directly to n-joint robots.

• In general, the components of the dynamics are coupled - the acceleration of a joint is a function
of the positions, velocities, and torques at other joints.

• We distinguish between two types of control for multi-joint robots:

– decentralized control, where each joint is controlled separately with no sharing of information
between joints

– centralized control, where full state information for each of the n joints is available to cal-
culate the controls for each joint.

Decentralized Multi-joint Control

• The simplest method for controlling a multi-joint robot is to apply at each joint an independent
controller

⌧(t) = Kp✓e(t) +Ki

Z t

0
✓e(t)dt +Kd✓̇e(t)

where KP , Ki, Kd are diagonal matrices.

• Decentralized control is appropriate when the dynamics are decoupled, at least approximately.
For example,

– gantry robots
– highly geared robots in the absence of gravity.

302



Centralized Multi-joint Control

• When gravity forces and torques are significant and coupled, or when the mass matrix M(✓) is
not well approximated by a diagonal matrix, decentralized control may not yield acceptable per-
formance.

• In this case the computed torque controller can be generalized to a multi-joint robot.

⌧ = fM(✓)

✓
✓̈d +Kd✓̇e +Kp✓e +Ki

Z
✓e(t)dt

◆
+ eh(✓, ✓̇)

Global Asymptotic Stability by PD Set-Point Control in absence of Gravity

• When PD setpoint control is applied, the controlled dynamics can be written as

M(✓)✓̈ + C(✓, ✓̇)✓̇ = Kp✓e �Kd✓̇

where the Coriolis and centripetal terms are written C(✓, ✓̇)✓̇.

• We can now define a virtual error energy stored in the control system

V (✓e, ✓̇e) =
1

2
✓Te Kp✓e +

1

2
✓̇TM(✓)✓̇

303



• Taking the time derivative and substituting the controlled dynamics into it, we get

V̇ (✓e, ✓̇e) = �✓̇TKp✓e +
1

2
✓̇TṀ(✓)✓̇ + ✓̇TM(✓)✓̈

= �✓̇TKp✓e +
1

2
✓̇TṀ(✓)✓̇ + ✓̇T [�C(✓, ✓̇)✓̇ +Kp✓e �Kd✓̇]

=
1

2
✓̇T [Ṁ(✓)� 2C(✓, ✓̇]✓̇ � ✓̇TKd✓̇

= �✓̇TKd✓̇

• This shows that the error energy is decreasing when ✓̇ 6= 0.

• When ✓̇ = ✓̈ = 0 and ✓ 6= ✓d, consider the controlled system

M(✓)✓̈ + C(✓, ✓̇)✓̇ = Kp✓e �Kd✓̇ ! Kp✓e = 0

where the virtual spring Kp ensures that ✓ = ✓d

• By the Krasovskii-LaSalle invariance principle, the total error energy decreases monotonically
and the robot converges to rest at ✓d (✓e = 0) from any initial state.

304



4.3 Task-Space Motion Control
• In the joint-space control, trajectories are naturally described by the joint variables, and there

are no issues of singularities or redundancy.

• If the robot interacts with the external environment and objects, it may be more convenient to
express the motion as a trajectory of the end-effector in task space.

• Let the end-effector trajectory be specified by (Xsb(t),Vb(t)) where Xsb 2 SE(3) and [Vb] = X�1
sb Ẋsb,

i.e., the twist Vb is expressed in the end-effector frame {b}.

• The first option is to convert the trajectory to joint space.

– The forward kinematics are Xsb = T (✓) and Vb = Jb(✓)✓̇.
– Then the joint-space trajectory is obtained from the task-space trajectory using inverse kine-

matics (IK) (Chapter 6):

(IK) ✓(t) = T�1(X(t))

✓̇(t) = J+
b (✓(t))Vb(t)

✓̈(t) = J+
b (✓(t))[V̇b(t)� J̇b(✓(t))✓̇]

– A drawback of this approach is that we must calculate the inverse kinematics, J+
b (✓) and

J̇b(✓), which may require significant computing power.

305



• The second option is to express the robot’s dynamics in task-space coordinates, as discussed in
Section 8.6.

– Recall the task-space dynamics and consider the error dynamics in task space

Fb = ⇤(✓)V̇b + ⌘(✓,Vb)

0 =

✓
d

dt
([AdX�1

sb Xsd
]Vd)� V̇

◆
+Kd

⇣
[AdX�1

sb Xsd
]Vd � V

⌘
+KpXe +Ki

Z
Xe(t)dt

– The joint forces and torques ⌧ are related to the wrenches Fb expressed in the end-effector
frame by ⌧ = JT

b (✓)Fb.
– We can now write a control law in task space inspired by the computed torque control law

in joint coordinates,

⌧ = JT
b (✓)

h
e⇤(✓)V̇b + e⌘(✓,Vb)

i

= JT
b (✓)


e⇤(✓)

✓
d

dt
([AdX�1

sb Xsd
]Vd) +KpXe +Ki

Z
Xe(t)dt +KdVe

◆
+ e⌘(✓,Vb)

�

⇤ d
dt([AdX�1

sb Xsd
]Vd) is the feedforward acceleration expressed in the actual end-effector frame

at Xsb (this term can be approximated as V̇d at states close to the reference state).
⇤ The configuration error Xe satisfies [Xe] = log(X�1

sb Xsd): Xe is the twist, expressed in the
end-effector frame, which, if followed for unit time, would move the current configuration
Xsb to the desired configuration Xsd.

⇤ The velocity error is calculated as Ve = [AdX�1
sb Xsd

]Vd � V
⇤ The transform [AdX�1

sb Xsd
] expresses the reference twist Vd, which is expressed in the frame

Xsd, as a twist in the end-effector frame at Xsb, in which the actual velocity V is repre-
sented, so the two expressions can be differenced.

306


