4 Motion Control with Torque or Force Inputs

e The robot-control engineers do not want to use the velocity-control modes for electric motors, be-
cause these velocity-control algorithms do not make use of a dynamic model of the robot.

e Instead, robot-control engineers use amplifiers in torque-control mode: the input to the amplifier
is the desired torque (or force).

e This allows the robot-control engineer to use a dynamic model of the robot in the design of the
control law.

e The controller generates joint torques and forces to try to track a desired trajectory in joint space
or task space.
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4.1 Motion Control of a Single Joint

Figure 11.11: A single-joint robot rotating under gravity. The center of mass is
indicated by the checkered disk.

e Consider a single motor attached to a single link.

e Let 7 be the motor’s torque and 6 be the angle of the link. The dynamics can be written as
M6 =7 — mgrcosd — b — 7 = M0 + mgr cos 0 + bl

where M is the scalar inertia of the link about the axis of rotation, m is the mass of the link, r
is the distance from the axis to the center of mass of the link, b is a viscous friction coefficient
due to bearing and transmission, and ¢ > 0 is the gravitational acceleration.

e Also it may write more compactly as
= M6+ h(6,0)

where h contains all terms that depend only on the state, not the acceleration.
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Feedback Control: PID Control

T arm

dynamics

+
» > K, >
4 -

Y
+

0

Figure 11.12: Block diagram of a PID controller.

A common feedback controller is linear proportional-integral-derivative control, or PID control.
The PID controller is simply the PI controller with an added term proportional to the time deriva-
tive of the error,

7(t) = K 0.(t) + K; / t 0(t)dt + Kq0.(t)
0

where the control gains K, K;, and K, are positive.

The proportional gain K, acts as a virtual spring that tries to reduce the position error 6.(t) =
O4(t) — 0(t).

The derivative gain K; acts as a virtual damper that tries to reduce the velocity error 0.(t) =
Ba(t) — O(t).

The integral gain can be used to reduce or eliminate steady-state errors.

204



PD Control and Second-Order Error Dynamics
e Consider the case where K; = 0, and assume the robot moves in a horizontal plane (¢ = 0).

e Substituting the PD control law into the dynamics, we get

MO + b0 = K 0, + K0,

e Take the set-point control task having 6, = constant and 6, = 6, = 0, so 6, = —6 and 6, = —0
M6, + (b+ Kg)8, + K,0, = 0

e In the standard second-order form,

(b—l— Kd) :

. K, H . . )
_ — 2 —
b+ 0.+ 220, =0 2 0.+ 2w + w0 =0

where the damping ratio ( and the natural frequency w, are

C_ b+ Ky o — &
- 2/K,M "

e Since the error dynamics equation is stable, the steady-state error is zero.

e For no overshoot and a fast response, the gains K,; and K, should be chosen to satisfy critical
damping (( = 1).

e For a fast response, K, should be chosen to be as high as possible, subject to practical issues such
as actuator saturation and so on.
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PID Control and Third-Order Error Dynamics
e Consider the case of setpoint control where the link moves in a vertical plane (g > 0).

e With the PD control law above, the error dynamics can now be written

M6, + (b + K4)6. + K,0. = mgr cosf

e At the steady-state,
Kp0, = mgrcost

The joint comes to rest at a configuration ¢ satisfying K,0. = mgrcos9, i.e., the final error 6. is
nonzero.

e We can make this steady-state error small by increasing the gain K, but, as discussed above,
there are practical limits.
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To eliminate the steady-state error, we return to the PID controller by setting K; > 0. To see how
this works, write down the set-point error dynamics

Mb, + (b+ Kz)0, + K, 0. + K; / 0. (t)dt = Taiss

where it is noted that 7, = mgrcosf can be constant at the steady-state.

Taking derivatives of both sides, we get the third-order error dynamics

MY+ (b+ Kb, + Kpée + Kil = 74ist = 0

Its characteristic equation is

b+ Ky K K;
3 2, fp o A
s° + v 57+ MS + i 0
(Routh Stability Criterion) Necessary condition: M >0b>0 K, >0 K; >0 K; >0
Sufficient condition: the first column should be positive

3. Ky
s”:1 7
82 b+ Ky &

M M
oK M

M b+ Ky

O.Ki
S i
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As a result, the new gain K; must satisfy both a lower and an upper bound

(b + Kd)Kp

0< K; <
M

Figure 11.14: The movement of the three roots of Equation (11.30) as K; increases
from zero. First a PD controller is chosen with K, and K yielding critical damping,
giving rise to two collocated roots on the negative real axis. Adding an infinitesimal
gain K; > 0 creates a third root at the origin. As we increase K;, one of the two
collocated roots moves to the left on the negative real axis while the other two roots
move toward each other, meet, break away from the real axis, begin curving to the
right, and finally move into the right half-plane when K; = (b + K4)K,/M. The
system is unstable for larger values of K.

e (Root Locus) After setting the critical damping ( = 1, the characteristic equation is rearranged
into

b+ Ky, K, K
Sl Tl o

1
— 1+ K, L(s) =1+ Kj————— =
R VA 0 — + K;L(s) + K; 0

° s(s + wy)?

where, use the matlab function rlocus if you are not good at the root locus method.
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e In the case of actuator saturation due to integral control, integrator anti-windup places a limit
on how large the error integral is allowed to grow.

e Pseudocode for the PID control algorithm

time = 0 // dt = servo cycle time
eint = 0 // error integral

gprev = senseAngle // initial joint angle q
loop

[qd,qdotd] = trajectory(time) // from trajectory generator

q = senseAngle // sense actual joint angle
qdot = (q - gprev)/dt // simple velocity calculation
gprev = q

e=qd -q

edot = qdotd - qdot

eint = eint + ex*xdt

tau = Kp*e + Kd*edot + Ki*eint
commandTorque (tau)

time = time + dt
end loop

Figure 11.15: Pseudocode for PID control.

e The PID controller applies well to trajectory following, but the integral control will not eliminate
tracking error along arbitrary trajectories.
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Feedforward Plus Feedback Linearization

e Another strategy for trajectory following is to use a model of the robot’s dynamics to proactively
generate torques instead of waiting for errors.

T=M@)6+h6,0) =  7=DM0)04+ h(0a,60,)

where M _h are models for M, h, respectively.

e All practical controllers use feedback + feedforward because a good model can be used to improve
performance and simplify analysis.

e Let us assign the desired error dynamics as
b + Kibo + K 0. + K; / 0.(t)dt =0
and then let us choose the acceleration from the desired error dynamics:
0 =04+ Kibo + K,0. + K; / B (t)dt

and finally let us apply the acceleration into the inverse dynamics equation

—— o~

T=M(O)+h(6,0) —  T=DM(0) (éd + Kb, + K 0. + Ki/ﬁe(t)dt> + h(6,6)

This controller is called as the inverse dynamics controller or the computed torque controller.

—

e ) (0) transforms the accelerations into the joint torques.
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Figure 11.18: Computed torque control. The feedforward acceleration 64 is added to
the acceleration 6s, computed by the PID feedback controller to create the commanded
acceleration 6.

time = 0 // dt = cycle time

eint = 0 // error integral

gprev = senseAngle // initial joint angle q
loop

[qd,qdotd,qdotdotd] = trajectory(time) // from trajectory generator

q = senseAngle // sense actual joint angle
qdot = (q - gprev)/dt // simple velocity calculation
gprev = q

e=qd - q

edot = qdotd - qdot
eint = eint + exdt

tau = Mtilde(q)*(qdotdotd+Kp*e+Kd*edot+Ki*eint) + htilde(q,qdot)
commandTorque (tau)

time = time + dt
end loop

Figure 11.20: Pseudocode for the computed torque controller.

-~ fb ff+f!b b |
desired ff+tb
Jr2dt F
ft
1 2 3 4 o 1 2 3 4
time (s) time (s)

Figure 11.19: Performance of feedforward only (ff), feedback only (fb), and com-
puted torque control (ffi+fb). The PID gains are taken from Figure 11.13, and the
feedforward modeling error is taken from Figure 11.17. The desired motion is Task 2
from Figure 11.17 (left-hand plot). The center plot shows the tracking performance of
the three controllers. The right-hand plot shows [ 72(t)dt, a standard measure of the
control effort, for each of the three controllers. These plots show typical behavior: the
computed torque controller yields better tracking than either feedforward or feedback
alone, with less control effort than feedback alone.
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4.2 Motion Control of a Multi-joint Robot

e The methods applied above for a single-joint robot carry over directly to n-joint robots.

e In general, the components of the dynamics are coupled - the acceleration of a joint is a function
of the positions, velocities, and torques at other joints.

e We distinguish between two types of control for multi-joint robots:

— decentralized control, where each joint is controlled separately with no sharing of information
between joints

— centralized control, where full state information for each of the n joints is available to cal-
culate the controls for each joint.

Decentralized Multi-joint Control

e The simplest method for controlling a multi-joint robot is to apply at each joint an independent
controller

7(t) = K,0.(t) + K; / ﬁ 0 (t)dt + Kq0.(t)

where Kp, K;, K; are diagonal matrices.

e Decentralized control is appropriate when the dynamics are decoupled, at least approximately.
For example,

— gantry robots

— highly geared robots in the absence of gravity.
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Centralized Multi-joint Control

e When gravity forces and torques are significant and coupled, or when the mass matrix M(0) is
not well approximated by a diagonal matrix, decentralized control may not yield acceptable per-
formance.

e In this case the computed torque controller can be generalized to a multi-joint robot.

— .

T:M@<%+%@+&@+m/@M@»%W@

Global Asymptotic Stability by PD Set-Point Control in absence of Gravity

e When PD setpoint control is applied, the controlled dynamics can be written as
M(6)0 +C(6,0)0 = K,0, — K40

where the Coriolis and centripetal terms are written C(6,6)6.

e We can now define a virtual error energy stored in the control system

) 1 1. )
V@ﬁgzaf&@+§ﬂMww
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e Taking the time derivative and substituting the controlled dynamics into it, we get

V(0.,0.) = —0"K,0, + 5eTM(e)e + 6T M ()6
T L.y . - .. )
= —0"K,0. + 50 M(0)0+ 6" [—C(0,0)0 + K 0. — Kq0)
1 .0 . oL )
— 5eT[M(e) —2C(6,0]0 — 0T K40
= —0TK,0

e This shows that the error energy is decreasing when 6 +# 0.
e When 6 =0 =0 and 6 +# 6,, consider the controlled system
M(6)+C(0,0)0 = K0, — Ks6 —  Kb.=0

where the virtual spring K, ensures that 0 = 6,

e By the Krasovskii-LaSalle invariance principle, the total error energy decreases monotonically
and the robot converges to rest at 6; (6. = 0) from any initial state.
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4.3 Task-Space Motion Control

e In the joint-space control, trajectories are naturally described by the joint variables, and there
are no issues of singularities or redundancy.

e If the robot interacts with the external environment and objects, it may be more convenient to
express the motion as a trajectory of the end-effector in task space.

e Let the end-effector trajectory be specified by (X (t), V,(t)) where X, € SE(3) and [V,)] = Xs_lesb,
i.e., the twist V), is expressed in the end-effector frame {b}.

e The first option is to convert the trajectory to joint space.

— The forward kinematics are X,, = 7(6) and V, = J,(0)6.
— Then the joint-space trajectory is obtained from the task-space trajectory using inverse kine-
matics (IK) (Chapter 6):

(IK)  0(t) =T"'(X(1)

— A drawback of this approach is that we must calculate the inverse kinematics, J;"() and
Jp(0), which may require significant computing power.
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e The second option is to express the robot’s dynamics in task-space coordinates, as discussed in
Section 8.6.

— Recall the task-space dynamics and consider the error dynamics in task space

Fy = NO)V, +n(0, V)

d .
0= (%([Adxsblxsdlvd) - v) + Ky ([Adxsblxsd]vd - v) + KX, + K, / X, (t)dt

— The joint forces and torques 7 are related to the wrenches 7, expressed in the end-effector
frame by 7 = JI(0)F,.

— We can now write a control law in task space inspired by the computed torque control law
in joint coordinates,

r = J7(0) RO, +i(0,)]

— JI(0) {7\(9) (%( [Ady 1y Vi) + KpXe + K; / Xe(t)dt + KM) + (0, Vb)]

x 4([Ad x-'x,,/Va) is the feedforward acceleration expressed in the actual end-effector frame

at X, (this term can be approximated as V, at states close to the reference state).

«x The configuration error X, satisfies [X,.| = log(XS_lesd): X, is the twist, expressed in the
end-effector frame, which, if followed for unit time, would move the current configuration
X, to the desired configuration X,,.

+ The velocity error is calculated as V., = [Adx-1y [Vi—V

+ The transform [Ady-1y | expresses the reference twist V,;, which is expressed in the frame
X4, as a twist in the end-effector frame at X, in which the actual velocity V is repre-
sented, so the two expressions can be differenced.

206



