3 Motion Control with Velocity Inputs

e There are two kinds of control inputs, e.g., velocity control and torque control. The joint velocity
will be commanded when

— the stepper motors are used

— the amplifier for an electric motor is placed in velocity control mode
e Here we can assume that there is direct control of the joint velocities, instead of joint torques.
e Also we will assume that the control inputs are joint velocities.
e The motion control task can be expressed in joint space or task space.

— When the trajectory is expressed in task space, the controller is fed a steady stream of end-
effector configurations X,(¢), and the goal is to command joint velocities that cause the robot
to track this trajectory.

— In joint space, the controller is fed a steady stream of desired joint positions 6,(¢).
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3.1 Motion Control of a Single Joint

Feedforward Control

e Given a desired joint trajectory 64(t), the simplest type of control would be to choose the com-
manded velocity 0(t) as

e This is called a feedforward or open-loop controller, since no feedback (sensor data) is needed to
implement it.

Feedback Control

e In practice, position errors will accumulate over time under the feedforward control law.

e An alternative strategy is to measure the actual position of each joint continually and implement
a feedback controller.
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P Control and First-Order Error Dynamics

e The simplest (feedforward plus) feedback controller is
0(t) = 6a(t) + Kp(Ba(t) — 0(t)) = Oa(t) + K,0.(t)

where K, > 0.

e It is would be preferable to use our knowledge of the desired trajectory 6,(¢) to initiate motion
before any error accumulates.

e This controller is called a proportional controller, or P controller, because it creates a corrective
control proportional to the position error 6.(t) = 0,(t) — 6(¢).

e In other words, the constant control gain K, acts somewhat like a virtual spring that tries to pull
the actual joint position to the desired joint position.

e The error dynamics
0c(t) = ba(t) — 6(1)

is written as follows after substituting in the P controller 6(t) = 6,(t) + K,0.(t):

0.(t) = =K, 0:.(t) —  6e(t) + K 0.(t) =0

e This is a first-order error dynamic equation with time constant t = KL
e The steady-state error is zero, there is no overshoot, and the 2% settling time is Ki

e A larger K, means a faster response.
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PI Control and Second-Order Error Dynamics

2

robot
s

> [ dt

Figure 11.9: The block diagram of feedforward plus PI feedback control that pro-
duces a commanded velocity € as input to the robot.

e An alternative to using a large gain K, is to introduce another term in the control law.

e A (feedforward plus) proportional-integral controller, or PI controller, adds a term that is propor-
tional to the time-integral of the error:

0(t) = 04(t) + K 0.(t) + K; / t 0.(0)do
0

where t is the current time and o is the variable of integration.

e With this controller, the error dynamics becomes
0c(t) = Ba(t) — 60(t)

is written as follows after substituting in the PI controller () = 64(t) + K,0.(t) + K; fot b.(0)do:

0.(t) = —K,0.(t) — K; / t O.(0)do  —  0.(t) + K,0.(t) + Kif(t) = 0
0
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e We can rewrite this equation in the standard second-order form, with

natural frequency : w, = \/ K;
Kp
2WEK;

damping ratio: { =

where the gain K, plays the role of % for the mass-spring-damper (a larger K, means a larger
damping constant b), and the gain K; plays the role of % (a larger K; means a larger spring con-

stant k).
k Oe
— N —
m |—f
7]
ml
b

Figure 11.3: A linear mass—spring—damper.

e The PI-controlled error dynamics equation is stable if K; > 0 and K, > 0, and the roots of the
characteristic equation are

K, [KZ
= P4/ -L K
T 4

e Let’s hold K, = 20 and plot the roots in the complex plane as K; grows from zero. This plot, or
any plot of the roots as one parameter is varied, is called a root locus.

e (Case I) For K; = 0, the characteristic equation s*> + 20s = s(s + 20) = 0 has roots at s; = 0 and
S9 = —20.
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Figure 11.7: (Left) The complex roots of the characteristic equation of the error
dynamics of the PI velocity-controlled joint for a fixed K, = 20 as K; increases from
zero. This is known as a root locus plot. (Right) The error response to an initial
error 0, = 1, 0, = 0, is shown for overdamped (¢ = 1.5, K; = 44.4, case I), critically
damped (¢ = 1, K; = 100, case II), and underdamped (¢ = 0.5, K; = 400, case III)
cases.

- As K, increases, the roots move toward each other on the real axis of the s-plane as shown
in the left-hand panel in the figure.

— Because the roots are real and unequal, the error dynamics equation is overdamped ({ =
2\[/(% > 1, case I) and the error response is sluggish due to the time constant t; = —i of the

exponential corresponding to the "slow” root.

- As K, increases, the damping ratio decreases, the “slow” root moves left (while the “fast” root
moves right), and the response gets faster.

K,

o (Case II) When K; = 100, the two roots meet at s, = —10 = —w, = —=*

— The error dynamics equation is critically damped (¢ = 1, case II).

— The error response has a short 2% settling time of 4t = wi = 0.4s and no overshoot or oscil-
lation.

e (Case III) As K; > 100 continues to grow, the damping ratio 0 < ( < 1

— The roots move vertically off the real axis, becoming complex conjugates at s;, = —10 +

Jjv K; — 100 (case III).
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— The error dynamics is underdamped, and the response begins to exhibit overshoot and oscil-
lation as K increases.

2 — (0.1 remains constant.

— The settling time is unaffected as the time constant t = C% = &

e According to our simple model of the PI controller, we could always choose K, and K; for critical

damping (K; = KT’%) and increase K, and K; without bound to make the error response arbitrarily
fast.

e As described above, however, there are practical limits. Within these practical limits, K, and K;
should be chosen to yield critical damping.

e A well-designed PI controller can be expected to provide better tracking performance than a P
controller.
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3.2 Motion Control of a Multi-joint Robot
e The single-joint PI feedback plus feedforward controller

0(t) = 04(t) + K 0.(t) + K; / t 0.(c)do
0

generalizes immediately to robots with n joints.

e The reference position 6,(t) € " and actual position 6(¢) € R" are now n-vectors, and the gains
K, and K; are diagonal n x n matrices of the form £,/ and k;I, where the scalars £, and k; are
positive and [ is the n x n identity matrix.

[0, 4(1)] ol i, 0 - 0] 5 0 - 0]
05 4(t O5(t 0 k, --- 0 s 0

Qd(t): 2,6?() c R H(t): 2() c " Kp: . -P . . c Rrxn K; = c Rrxn
0,.a(t) 0.(1) 0 0 -k 00 - k

e Each joint is subject to the same stability and performance analysis as the single joint in Section
11.3.1.
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3.3 Task-Space Motion Control

e Let us express the feedforward plus feedback control law in task space.

o Let X, (t) € SE(3) be the configuration of the end-effector as a function of time and V(t) be the
end-effector twist expressed in the end-effector frame {b}, i.e., [V}] = X' X

e The desired motion is given by X,,(¢) and [V,] = Xs_leSd.

e A task-space version of the control law is
t
Vilt) = [Ady 1 JValt) + K, X (8) + K, / X.(0)do
v 0

— The term [Ady-1y |Vi(t) expresses the feedforward twist V, in the actual end-effector frame
at X,, rather than the desired end-effector frame X,,.

— When the end-effector is at the desired configuration (X, = X,;), this term reduces to V.

— The configuration error X, (t) is not simply X,(¢) — X (¢), since it does not make sense to sub-
tract elements of SFE(3).

— X, should refer to the twist which, if followed for unit time, takes X, to X,,.
— The se(3) representation of this twist, expressed in the end-effector frame, is [X.] = log(X ' X.4).
— Diagonal gain matrices K, K; € R5*¢ take the form k,I and k;I, respectively, where k,, k; > 0.

— The commanded joint velocities 6(t) realizing V, from the control law can be calculated using
the inverse velocity kinematics,

0(t) = J, (Vs = I () |[Adx-1x Va(t) + KpXe(t) + K /0 ! Xe(a)da]

where J;"(t) is the pseudoinverse of the body Jacobian.
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e Motion control in task space can be defined using other representations of the end-effector con-
figuration and velocity.

e For a minimal coordinate representation of the end-effector configuration = € R, the control law
can be written

E(t) = 2q(t) + Kp(xa(t) — x(t)) + Ki/o (xq(0) — x(0))do

e For a hybrid configuration representation X, = (R, p), with velocities represented by (w;, p):

w(®)]  [RE O Ru(t) 03x3] [walt) [
where
(1) log(RZ (t) Rsa(t))
pa(t) — p(t)
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Figure 11.10: (Left) The end-effector configuration converging to the origin under
the control law (11.16), where the end-effector velocity is represented as the body twist
Vs. (Right) The end-effector configuration converging to the origin under the control
law (11.18), where the end-effector velocity is represented as (ws, p).

e Figure shows the performance of the control law (11.16), where the end-effector velocity is the
body twist V,, and the performance of the control law (11.18), where the end-effector velocity is

(wp, P)-

The control task is to stabilize X,,; at the origin from the initial configuration

—1

0
Ry=1{1 0
0 O

(e R S G —

0
0 Po =
1

The feedforward velocity is zero and K; = 0.

Figure shows the different paths followed by the end-effector.

The decoupling of linear and angular control in the control law (11.18) is visible in the straight-
line motion of the origin of the end-effector frame.
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