
3 Motion Control with Velocity Inputs
• There are two kinds of control inputs, e.g., velocity control and torque control. The joint velocity

will be commanded when

– the stepper motors are used
– the amplifier for an electric motor is placed in velocity control mode

• Here we can assume that there is direct control of the joint velocities, instead of joint torques.

• Also we will assume that the control inputs are joint velocities.

• The motion control task can be expressed in joint space or task space.

– When the trajectory is expressed in task space, the controller is fed a steady stream of end-
effector configurations Xd(t), and the goal is to command joint velocities that cause the robot
to track this trajectory.

– In joint space, the controller is fed a steady stream of desired joint positions ✓d(t).
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3.1 Motion Control of a Single Joint

Feedforward Control

• Given a desired joint trajectory ✓d(t), the simplest type of control would be to choose the com-
manded velocity ✓̇(t) as

✓̇(t) = ✓̇d(t)

• This is called a feedforward or open-loop controller, since no feedback (sensor data) is needed to
implement it.

Feedback Control

• In practice, position errors will accumulate over time under the feedforward control law.

• An alternative strategy is to measure the actual position of each joint continually and implement
a feedback controller.

282



P Control and First-Order Error Dynamics

• The simplest (feedforward plus) feedback controller is

✓̇(t) = ✓̇d(t) +Kp(✓d(t)� ✓(t)) = ✓̇d(t) +Kp✓e(t)

where Kp > 0.

• It is would be preferable to use our knowledge of the desired trajectory ✓d(t) to initiate motion
before any error accumulates.

• This controller is called a proportional controller, or P controller, because it creates a corrective
control proportional to the position error ✓e(t) = ✓d(t)� ✓(t).

• In other words, the constant control gain Kp acts somewhat like a virtual spring that tries to pull
the actual joint position to the desired joint position.

• The error dynamics

✓̇e(t) = ✓̇d(t)� ✓̇(t)

is written as follows after substituting in the P controller ✓̇(t) = ✓̇d(t) +Kp✓e(t):

✓̇e(t) = �Kp✓e(t) ! ✓̇e(t) +Kp✓e(t) = 0

• This is a first-order error dynamic equation with time constant t = 1
Kp

.

• The steady-state error is zero, there is no overshoot, and the 2% settling time is 4
Kp

.

• A larger Kp means a faster response.
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PI Control and Second-Order Error Dynamics

• An alternative to using a large gain Kp is to introduce another term in the control law.

• A (feedforward plus) proportional-integral controller, or PI controller, adds a term that is propor-
tional to the time-integral of the error:

✓̇(t) = ✓̇d(t) +Kp✓e(t) +Ki

Z t

0
✓e(�)d�

where t is the current time and � is the variable of integration.

• With this controller, the error dynamics becomes

✓̇e(t) = ✓̇d(t)� ✓̇(t)

is written as follows after substituting in the PI controller ✓̇(t) = ✓̇d(t) +Kp✓e(t) +Ki

R t
0 ✓e(�)d�:

✓̇e(t) = �Kp✓e(t)�Ki

Z t

0
✓e(�)d� ! ✓̈e(t) +Kp✓̇e(t) +Ki✓e(t) = 0
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• We can rewrite this equation in the standard second-order form, with

natural frequency : !n =
p
Ki

damping ratio : ⇣ =
Kp

2
p
Ki

.

where the gain Kp plays the role of b
m for the mass-spring-damper (a larger Kp means a larger

damping constant b), and the gain Ki plays the role of k
m (a larger Ki means a larger spring con-

stant k).

• The PI-controlled error dynamics equation is stable if Ki > 0 and Kp > 0, and the roots of the
characteristic equation are

s1,2 = �Kp

2
±

r
K2

p

4
�Ki

• Let’s hold Kp = 20 and plot the roots in the complex plane as Ki grows from zero. This plot, or
any plot of the roots as one parameter is varied, is called a root locus.

• (Case I) For Ki = 0, the characteristic equation s2 + 20s = s(s + 20) = 0 has roots at s1 = 0 and
s2 = �20.
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– As Ki increases, the roots move toward each other on the real axis of the s-plane as shown
in the left-hand panel in the figure.

– Because the roots are real and unequal, the error dynamics equation is overdamped (⇣ =
Kp

2
p
Ki

> 1, case I) and the error response is sluggish due to the time constant t1 = � 1
s1

of the
exponential corresponding to the ”slow” root.

– As Ki increases, the damping ratio decreases, the “slow” root moves left (while the “fast” root
moves right), and the response gets faster.

• (Case II) When Ki = 100, the two roots meet at s1,2 = �10 = �!n = �Kp

2

– The error dynamics equation is critically damped (⇣ = 1, case II).
– The error response has a short 2% settling time of 4t = 4

!n
= 0.4s and no overshoot or oscil-

lation.

• (Case III) As Ki > 100 continues to grow, the damping ratio 0 < ⇣ < 1

– The roots move vertically off the real axis, becoming complex conjugates at s1,2 = �10 ±
j
p
Ki � 100 (case III).
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– The error dynamics is underdamped, and the response begins to exhibit overshoot and oscil-
lation as Ki increases.

– The settling time is unaffected as the time constant t = 1
⇣!n

= 2
Kp

= 0.1 remains constant.

• According to our simple model of the PI controller, we could always choose Kp and Ki for critical
damping (Ki =

K2
p

4 ) and increase Kp and Ki without bound to make the error response arbitrarily
fast.

• As described above, however, there are practical limits. Within these practical limits, Kp and Ki

should be chosen to yield critical damping.

• A well-designed PI controller can be expected to provide better tracking performance than a P
controller.
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3.2 Motion Control of a Multi-joint Robot
• The single-joint PI feedback plus feedforward controller

✓̇(t) = ✓̇d(t) +Kp✓e(t) +Ki

Z t

0
✓e(�)d�

generalizes immediately to robots with n joints.

• The reference position ✓d(t) 2 <n and actual position ✓(t) 2 <n are now n-vectors, and the gains
Kp and Ki are diagonal n ⇥ n matrices of the form kpI and kiI, where the scalars kp and ki are
positive and I is the n⇥ n identity matrix.

✓d(t) =

2

666664

✓1,d(t)

✓2,d(t)
...

✓n,d(t)

3

777775
2 <n ✓(t) =

2

666664

✓1(t)

✓2(t)
...

✓n(t)

3

777775
2 <n Kp =

2

666664

kp 0 · · · 0

0 kp · · · 0
... ... . . . ...
0 0 · · · kp

3

777775
2 <n⇥n Ki =

2

666664

ki 0 · · · 0

0 ki · · · 0
... ... . . . ...
0 0 · · · ki

3

777775
2 <n⇥n

• Each joint is subject to the same stability and performance analysis as the single joint in Section
11.3.1.
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3.3 Task-Space Motion Control
• Let us express the feedforward plus feedback control law in task space.

• Let Xsb(t) 2 SE(3) be the configuration of the end-effector as a function of time and Vb(t) be the
end-effector twist expressed in the end-effector frame {b}, i.e., [Vb] = X�1

sb Ẋsb.

• The desired motion is given by Xsd(t) and [Vd] = X�1
sd Ẋsd.

• A task-space version of the control law is

Vb(t) = [AdX�1
sb Xsd

]Vd(t) +KpXe(t) +Ki

Z t

0
Xe(�)d�

– The term [AdX�1
sb Xsd

]Vd(t) expresses the feedforward twist Vd in the actual end-effector frame
at Xsb rather than the desired end-effector frame Xsd.

– When the end-effector is at the desired configuration (Xsb = Xsd), this term reduces to Vd.
– The configuration error Xe(t) is not simply Xd(t)�X(t), since it does not make sense to sub-

tract elements of SE(3).
– Xe should refer to the twist which, if followed for unit time, takes Xsb to Xsd.
– The se(3) representation of this twist, expressed in the end-effector frame, is [Xe] = log(X�1

sb Xsd).
– Diagonal gain matrices Kp, Ki 2 <6⇥6 take the form kpI and kiI, respectively, where kp, ki > 0.

– The commanded joint velocities ✓̇(t) realizing Vb from the control law can be calculated using
the inverse velocity kinematics,

✓̇(t) = J+
b (t)Vb = J+

b (t)


[AdX�1

sb Xsd
]Vd(t) +KpXe(t) +Ki

Z t

0
Xe(�)d�

�

where J+
b (t) is the pseudoinverse of the body Jacobian.
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• Motion control in task space can be defined using other representations of the end-effector con-
figuration and velocity.

• For a minimal coordinate representation of the end-effector configuration x 2 <m, the control law
can be written

ẋ(t) = ẋd(t) +Kp(xd(t)� x(t)) +Ki

Z t

0
(xd(�)� x(�))d�

• For a hybrid configuration representation Xsb = (Rsb, p), with velocities represented by (!b, ṗ):

"
!b(t)

ṗ(t)

#
=

"
RT

sb(t)Rsd(t) 03⇥3

03⇥3 I3⇥3

#"
!d(t)

ṗd

#
+KpXe(t) +Ki

Z t

0
Xe(�)d�

where

Xe(t) =

"
log(RT

sb(t)Rsd(t))

pd(t)� p(t)

#
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• Figure shows the performance of the control law (11.16), where the end-effector velocity is the
body twist Vb, and the performance of the control law (11.18), where the end-effector velocity is
(!b, ṗ).

• The control task is to stabilize Xsd at the origin from the initial configuration

R0 =

2

664

0 �1 0

1 0 0

0 0 1

3

775 p0 =

2

664

1

1

0

3

775

• The feedforward velocity is zero and Ki = 0.

• Figure shows the different paths followed by the end-effector.

• The decoupling of linear and angular control in the control law (11.18) is visible in the straight-
line motion of the origin of the end-effector frame.
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