3 Motion Control with Velocity Inputs

- There are two kinds of control inputs, e.g., velocity control and torque control. The joint velocity will be commanded when
- the stepper motors are used
- the amplifier for an electric motor is placed in velocity control mode
- Here we can assume that there is direct control of the joint velocities, instead of joint torques.
- Also we will assume that the control inputs are joint velocities.
- The motion control task can be expressed in joint space or task space.
- When the trajectory is expressed in task space, the controller is fed a steady stream of endeffector configurations $X_{d}(t)$, and the goal is to command joint velocities that cause the robot to track this trajectory.
- In joint space, the controller is fed a steady stream of desired joint positions $\theta_{d}(t)$.

3.1 Motion Control of a Single Joint

Feedforward Control

- Given a desired joint trajectory $\theta_{d}(t)$, the simplest type of control would be to choose the commanded velocity $\dot{\theta}(t)$ as

$$
\dot{\theta}(t)=\dot{\theta}_{d}(t)
$$

- This is called a feedforward or open-loop controller, since no feedback (sensor data) is needed to implement it.

Feedback Control

- In practice, position errors will accumulate over time under the feedforward control law.
- An alternative strategy is to measure the actual position of each joint continually and implement a feedback controller.

P Control and First-Order Error Dynamics

- The simplest (feedforward plus) feedback controller is

$$
\dot{\theta}(t)=\dot{\theta}_{d}(t)+K_{p}\left(\theta_{d}(t)-\theta(t)\right)=\dot{\theta}_{d}(t)+K_{p} \theta_{e}(t)
$$

where $K_{p}>0$.

- It is would be preferable to use our knowledge of the desired trajectory $\theta_{d}(t)$ to initiate motion before any error accumulates.
- This controller is called a proportional controller, or P controller, because it creates a corrective control proportional to the position error $\theta_{e}(t)=\theta_{d}(t)-\theta(t)$.
- In other words, the constant control gain K_{p} acts somewhat like a virtual spring that tries to pull the actual joint position to the desired joint position.
- The error dynamics

$$
\dot{\theta}_{e}(t)=\dot{\theta}_{d}(t)-\dot{\theta}(t)
$$

is written as follows after substituting in the P controller $\dot{\theta}(t)=\dot{\theta}_{d}(t)+K_{p} \theta_{e}(t)$:

$$
\dot{\theta}_{e}(t)=-K_{p} \theta_{e}(t) \quad \rightarrow \quad \dot{\theta}_{e}(t)+K_{p} \theta_{e}(t)=0
$$

- This is a first-order error dynamic equation with time constant $\mathrm{t}=\frac{1}{K_{p}}$.
- The steady-state error is zero, there is no overshoot, and the 2% settling time is $\frac{4}{K_{p}}$.
- A larger K_{p} means a faster response.

PI Control and Second-Order Error Dynamics

Figure 11.9: The block diagram of feedforward plus PI feedback control that produces a commanded velocity θ as input to the robot.

- An alternative to using a large gain K_{p} is to introduce another term in the control law.
- A (feedforward plus) proportional-integral controller, or PI controller, adds a term that is proportional to the time-integral of the error:

$$
\dot{\theta}(t)=\dot{\theta}_{d}(t)+K_{p} \theta_{e}(t)+K_{i} \int_{0}^{t} \theta_{e}(\sigma) d \sigma
$$

where t is the current time and σ is the variable of integration.

- With this controller, the error dynamics becomes

$$
\dot{\theta}_{e}(t)=\dot{\theta}_{d}(t)-\dot{\theta}(t)
$$

is written as follows after substituting in the PI controller $\dot{\theta}(t)=\dot{\theta}_{d}(t)+K_{p} \theta_{e}(t)+K_{i} \int_{0}^{t} \theta_{e}(\sigma) d \sigma$:

$$
\dot{\theta}_{e}(t)=-K_{p} \theta_{e}(t)-K_{i} \int_{0}^{t} \theta_{e}(\sigma) d \sigma \quad \rightarrow \quad \ddot{\theta}_{e}(t)+K_{p} \dot{\theta}_{e}(t)+K_{i} \theta_{e}(t)=0
$$

- We can rewrite this equation in the standard second-order form, with

$$
\begin{aligned}
& \text { natural frequency : } \omega_{n}=\sqrt{K_{i}} \\
& \text { damping ratio : } \zeta=\frac{K_{p}}{2 \sqrt{K_{i}}} .
\end{aligned}
$$

where the gain K_{p} plays the role of $\frac{b}{\mathrm{~m}}$ for the mass-spring-damper (a larger K_{p} means a larger damping constant b), and the gain K_{i} plays the role of $\frac{k}{\mathrm{~m}}$ (a larger K_{i} means a larger spring constant k).

Figure 11.3: A linear mass-spring-damper.

- The PI-controlled error dynamics equation is stable if $K_{i}>0$ and $K_{p}>0$, and the roots of the characteristic equation are

$$
s_{1,2}=-\frac{K_{p}}{2} \pm \sqrt{\frac{K_{p}^{2}}{4}-K_{i}}
$$

- Let's hold $K_{p}=20$ and plot the roots in the complex plane as K_{i} grows from zero. This plot, or any plot of the roots as one parameter is varied, is called a root locus.
- (Case I) For $K_{i}=0$, the characteristic equation $s^{2}+20 s=s(s+20)=0$ has roots at $s_{1}=0$ and $s_{2}=-20$.

Figure 11.7: (Left) The complex roots of the characteristic equation of the error dynamics of the PI velocity-controlled joint for a fixed $K_{p}=20$ as K_{i} increases from zero. This is known as a root locus plot. (Right) The error response to an initial error $\theta_{e}=1, \dot{\theta}_{e}=0$, is shown for overdamped ($\zeta=1.5, K_{i}=44.4$, case I), critically damped ($\zeta=1, K_{i}=100$, case II), and underdamped ($\zeta=0.5, K_{i}=400$, case III) cases.

- As K_{i} increases, the roots move toward each other on the real axis of the s-plane as shown in the left-hand panel in the figure.
- Because the roots are real and unequal, the error dynamics equation is overdamped ($\zeta=$ $\frac{K_{p}}{2 \sqrt{K_{i}}}>1$, case I) and the error response is sluggish due to the time constant $\mathrm{t}_{1}=-\frac{1}{s_{1}}$ of the exponential corresponding to the "slow" root.
- As K_{i} increases, the damping ratio decreases, the "slow" root moves left (while the "fast" root moves right), and the response gets faster.
- (Case II) When $K_{i}=100$, the two roots meet at $s_{1,2}=-10=-\omega_{n}=-\frac{K_{p}}{2}$
- The error dynamics equation is critically damped ($\zeta=1$, case II).
- The error response has a short 2% settling time of $4 \mathrm{t}=\frac{4}{\omega_{n}}=0.4 \mathrm{~s}$ and no overshoot or oscillation.
- (Case III) As $K_{i}>100$ continues to grow, the damping ratio $0<\zeta<1$
- The roots move vertically off the real axis, becoming complex conjugates at $s_{1,2}=-10 \pm$ $j \sqrt{K_{i}-100}$ (case III).
- The error dynamics is underdamped, and the response begins to exhibit overshoot and oscillation as K_{i} increases.
- The settling time is unaffected as the time constant $\mathrm{t}=\frac{1}{\zeta \omega_{n}}=\frac{2}{K_{p}}=0.1$ remains constant.
- According to our simple model of the PI controller, we could always choose K_{p} and K_{i} for critical damping ($K_{i}=\frac{K_{p}^{2}}{4}$) and increase K_{p} and K_{i} without bound to make the error response arbitrarily fast.
- As described above, however, there are practical limits. Within these practical limits, K_{p} and K_{i} should be chosen to yield critical damping.
- A well-designed PI controller can be expected to provide better tracking performance than a P controller.

3.2 Motion Control of a Multi-joint Robot

- The single-joint PI feedback plus feedforward controller

$$
\dot{\theta}(t)=\dot{\theta}_{d}(t)+K_{p} \theta_{e}(t)+K_{i} \int_{0}^{t} \theta_{e}(\sigma) d \sigma
$$

generalizes immediately to robots with n joints.

- The reference position $\theta_{d}(t) \in \Re^{n}$ and actual position $\theta(t) \in \Re^{n}$ are now n-vectors, and the gains K_{p} and K_{i} are diagonal $n \times n$ matrices of the form $k_{p} I$ and $k_{i} I$, where the scalars k_{p} and k_{i} are positive and I is the $n \times n$ identity matrix.

$$
\theta_{d}(t)=\left[\begin{array}{c}
\theta_{1, d}(t) \\
\theta_{2, d}(t) \\
\vdots \\
\theta_{n, d}(t)
\end{array}\right] \in \Re^{n} \quad \theta(t)=\left[\begin{array}{c}
\theta_{1}(t) \\
\theta_{2}(t) \\
\vdots \\
\theta_{n}(t)
\end{array}\right] \in \Re^{n} \quad K_{p}=\left[\begin{array}{cccc}
k_{p} & 0 & \cdots & 0 \\
0 & k_{p} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & k_{p}
\end{array}\right] \in \Re^{n \times n} \quad K_{i}=\left[\begin{array}{cccc}
k_{i} & 0 & \cdots & 0 \\
0 & k_{i} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & k_{i}
\end{array}\right] \in \Re^{n \times n}
$$

- Each joint is subject to the same stability and performance analysis as the single joint in Section 11.3.1.

3.3 Task-Space Motion Control

- Let us express the feedforward plus feedback control law in task space.
- Let $X_{s b}(t) \in S E(3)$ be the configuration of the end-effector as a function of time and $\mathcal{V}_{b}(t)$ be the end-effector twist expressed in the end-effector frame $\{\mathrm{b}\}$, i.e., $\left[\mathcal{V}_{b}\right]=X_{s b}^{-1} \dot{X}_{s b}$.
- The desired motion is given by $X_{s d}(t)$ and $\left[\mathcal{V}_{d}\right]=X_{s d}^{-1} \dot{X}_{s d}$.
- A task-space version of the control law is

$$
\mathcal{V}_{b}(t)=\left[A d_{X_{s b}^{-1} X_{s d}}\right] \mathcal{V}_{d}(t)+K_{p} X_{e}(t)+K_{i} \int_{0}^{t} X_{e}(\sigma) d \sigma
$$

- The term $\left[A d_{X_{s b}^{-1} X_{s d}}\right] \mathcal{V}_{d}(t)$ expresses the feedforward twist \mathcal{V}_{d} in the actual end-effector frame at $X_{s b}$ rather than the desired end-effector frame $X_{s d}$.
- When the end-effector is at the desired configuration ($X_{s b}=X_{s d}$), this term reduces to \mathcal{V}_{d}.
- The configuration error $X_{e}(t)$ is not simply $X_{d}(t)-X(t)$, since it does not make sense to subtract elements of $S E(3)$.
- X_{e} should refer to the twist which, if followed for unit time, takes $X_{s b}$ to $X_{s d}$.
- The se(3) representation of this twist, expressed in the end-effector frame, is $\left[X_{e}\right]=\log \left(X_{s b}^{-1} X_{s d}\right)$.
- Diagonal gain matrices $K_{p}, K_{i} \in \Re^{6 \times 6}$ take the form $k_{p} I$ and $k_{i} I$, respectively, where $k_{p}, k_{i}>0$.
- The commanded joint velocities $\dot{\theta}(t)$ realizing \mathcal{V}_{b} from the control law can be calculated using the inverse velocity kinematics,

$$
\dot{\theta}(t)=J_{b}^{+}(t) \mathcal{V}_{b}=J_{b}^{+}(t)\left[\left[A d_{X_{s b}^{-1} X_{s d}}\right] \mathcal{V}_{d}(t)+K_{p} X_{e}(t)+K_{i} \int_{0}^{t} X_{e}(\sigma) d \sigma\right]
$$

where $J_{b}^{+}(t)$ is the pseudoinverse of the body Jacobian.

- Motion control in task space can be defined using other representations of the end-effector configuration and velocity.
- For a minimal coordinate representation of the end-effector configuration $x \in \Re^{m}$, the control law can be written

$$
\dot{x}(t)=\dot{x}_{d}(t)+K_{p}\left(x_{d}(t)-x(t)\right)+K_{i} \int_{0}^{t}\left(x_{d}(\sigma)-x(\sigma)\right) d \sigma
$$

- For a hybrid configuration representation $X_{s b}=\left(R_{s b}, p\right)$, with velocities represented by $\left(\omega_{b}, \dot{p}\right)$:

$$
\left[\begin{array}{c}
\omega_{b}(t) \\
\dot{p}(t)
\end{array}\right]=\left[\begin{array}{cc}
R_{s b}^{T}(t) R_{s d}(t) & 0_{3 \times 3} \\
0_{3 \times 3} & I_{3 \times 3}
\end{array}\right]\left[\begin{array}{c}
\omega_{d}(t) \\
\dot{p}_{d}
\end{array}\right]+K_{p} X_{e}(t)+K_{i} \int_{0}^{t} X_{e}(\sigma) d \sigma
$$

where

$$
X_{e}(t)=\left[\begin{array}{c}
\log \left(R_{s b}^{T}(t) R_{s d}(t)\right) \\
p_{d}(t)-p(t)
\end{array}\right]
$$

Figure 11.10: (Left) The end-effector configuration converging to the origin under the control law (11.16), where the end-effector velocity is represented as the body twist \mathcal{V}_{b}. (Right) The end-effector configuration converging to the origin under the control law (11.18), where the end-effector velocity is represented as (ω_{b}, \dot{p}).

- Figure shows the performance of the control law (11.16), where the end-effector velocity is the body twist \mathcal{V}_{b}, and the performance of the control law (11.18), where the end-effector velocity is $\left(\omega_{b}, \dot{p}\right)$.
- The control task is to stabilize $X_{s d}$ at the origin from the initial configuration

$$
R_{0}=\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \quad p_{0}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

- The feedforward velocity is zero and $K_{i}=0$.
- Figure shows the different paths followed by the end-effector.
- The decoupling of linear and angular control in the control law (11.18) is visible in the straightline motion of the origin of the end-effector frame.

