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Robot Control
• In tasks such as writing on a chalkboard, it must control forces in some directions (the force must

press the chalk against the board) and motions in others (the motion must be in the plane of the
board).

• The job of the robot controller is to convert the task specification to forces and torques at the
actuators.

• Control strategies include (1) motion control, (2) force control, (3) hybrid motion-force control, (4)
impedance control.

• Which of these behaviors is appropriate depends on both the task and the environment. For ex-
ample, a force-control goal makes sense when the end-effector is in contact with something but
not when it is moving in free space.

• The robot cannot independently control the motion and force in the same direction.

– If the robot imposes a motion then the environment will determine the force
– If the robot imposes a force then the environment will determine the motion.

• Once we have chosen a control goal consistent with the task and environment, we can use feed-
back control to achieve it.
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1 Control System Overview
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• Sensors are listed:

– potentiometers, encoders, or resolvers for joint position and angle sensing
– tachometers for joint velocity sensing
– joint force-torque sensors
– multi-axis force-torque sensors at the “wrist” between the end of the arm and the end-effector.

• The controller samples the sensors and updates its control signals to the actuators at a rate of
hundreds to a few thousands of Hz.

• In our analysis we will ignore the fact that the sampling time is nonzero and treat controllers as
if they were implemented in continuous time.

• Real robot systems are subject to

– flexibility and vibrations in the joints and links
– backlash at the gears and transmissions
– actuator saturation limits
– limited resolution of the sensors.

These raise significant issues in design and control.
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2 Error Dynamics
• Consider the controlled dynamics of a single joint and define the joint error to be

✓e(t) = ✓d(t)� ✓(t)

• The differential equation governing the evolution of the joint error ✓e(t) of the controlled system
is called the error dynamics.

• The purpose of the feedback controller is to create an error dynamics such that ✓e(t) ! 0, or a
small value, as t ! 1.
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2.1 Error Response

• A common way to test how well a controller works is to specify a nonzero initial error ✓e(0) and
see how quickly, and how completely, the controller reduces the initial error.

• A typical error response ✓e(t) can be described by a transient response and a steady-state re-
sponse.

– The steady-state response is characterized by the steady-state error ess, which is the asymp-
totic error ✓e(t) as t ! 1.

– The transient response is characterized by the overshoot and (2%) settling time. The 2% set-
tling time is the first time T such that |✓e(t) � ess| <= 0.02(✓e(0) � ess) for all t � T (see the
pair of long-dashed lines).

• A good error response is characterized by

– little or no steady-state error
– little or no overshoot
– a short 2% settling time.
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2.2 Linear Error Dynamics
• Consider the error dynamics described by linear ordinary differential equations of the form

ap✓
(p)
e + ap�1✓

(p�1)
e + · · ·+ a1✓̇e + a0✓e = c

This is a pth-order differential equation

• The differential equation is homogeneous if the constant c = 0 and nonhomogeneous if c 6= 0.

• For homogeneous (c = 0) linear error dynamics, the pth-order differential equation can be rewrit-
ten as

✓(p)e = �ap�1

ap
✓(p�1)
e � · · ·� a1

ap
✓̇e �

a0
ap
✓e

= �a0p�1✓
(p�1)
e � · · ·� a01✓̇e � a00✓e

• This pth-order differential equation can be expressed as p coupled first-order differential equa-
tions by defining the vector x = (x1, · · · , xp), where

x1 = ✓e x2 = ✓̇e x3 = ✓̈e · · · xp = ✓(p�1)
e

ẋ1 = x2 ẋ2 = x3 ẋ3 = x4 · · · ẋp = �a00x1 � a01x2 � · · ·� a0p�1xp
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Then ẋ(t) = Ax(t), where

A =

2

66666666664

0 1 0 · · · 0 0

0 0 1 · · · 0 0
... ... ... . . . ... ...
0 0 0 · · · 1 0

0 0 0 · · · 0 1

�a00 �a01 �a02 · · · �a0p�2 �a0p�1

3

77777777775

2 <p⇥p

• By analogy with the scalar first-order differential equation,

ẋ = ax(t) with a scalar a ! x(t) = eatx(0)

ẋ = Ax(t) with a matrix A ! x(t) = eAtx(0)

where the scalar solution x(t) goes to zero when a < 0 and the vector solution x(t) tends to zero
vector when A < 0 (all eigenvalues have negative real components)

• (Routh Stability Criterion) The eigenvalues of A are given by the roots of the characteristic poly-
nomial of A, i.e.,

det(sI � A) = sp + a0p�1s
p�1 + a02s

2 + a01s+ a00 = 0

– Necessary condition:

a0p�1 > 0 · · · a02 > 0 a01 > 0 a00 > 0
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– Sufficient condition: the first column should be positive

sp : 1 a0p�2 a0p�4 · · ·

sp�1 : a0p�1 a0p�3 a0p�5 · · ·

sp�2 : a0p�2 �
a0p�3

a0p�1

a0p�4 �
a0p�5

a0p�1

· · ·

sp�3 :
...

For example, a0p�2 �
a0p�3

a0p�1
> 0 is required.

– If each root of characteristic equation has a negative real component, we call the error dy-
namics stable.

– If any of the roots has a positive real component, the error dynamics are unstable, and the
error k✓e(t)k can grow without bound as t ! 1.
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• Consider a linear mass-spring-damper.

• The position of the mass m is ✓e and an external force f is applied to the mass.

m✓̈e = f � b✓̇e � k✓e ! m✓̈e + b✓̇e + k✓e = f

This is second-order dynamics and it is stable by the Routh Stability Criterion, when f = 0.

• In the limit as the mass m approaches zero, the second-order dynamics reduces to the first-order
dynamics

b✓̇e + k✓e = f

By the first-order dynamics, an external force generates a velocity rather than an acceleration.
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First-Order Error Dynamics

• The first-order error dynamics with f = 0 can be written in the form using the Laplace Transform

✓̇e(t) +
k

b
✓e = 0 ! ✓̇e(t) +

1

t
✓e = 0 ! sE(s)� ✓e(0) +

1

t
E(s) = 0 ! E(s) =

1

s+ 1/t
✓e(0)

where t = b
k is called the time constant of the first-order differential equation.

• The solution to the differential equation is

✓e(t) = e�
t
t✓e(0)

• The time constant t is the time at which the first-order exponential decay has decayed to approx-
imately 37% of its initial value.

• The steady-state error is zero, there is no overshoot in the decaying exponential error response,
and the 2% settling time is determined by solving

✓e(t)

✓e(0)
= 0.02 = e�

t
t ! ln 0.02 = �t

t
! t = 3.91t ! t ⇡ 4t

• The response gets faster as the spring constant k increases or the damping constant b decreases.
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Second-Order Error Dynamics

• The second-order error dynamics

✓̈e(t) +
b

m
✓̇e(t) +

k

m
✓e(t) = 0

can be written in the standard second-order form

✓̈e(t) + 2⇣!n✓̇e(t) + !2
n✓e(t) = 0

where !n =
q

k
m is called the natural frequency and ⇣ = b

2
p
km

is called the damping ratio.

• Let us define x1 = ✓e and x2 = ✓̇e, then we have

ẋ = Ax with A =

"
0 1

�!2
n �2⇣!n

#

The characteristic equation becomes

det(sI � A) = 0 ! s2 + 2⇣!ns+ !2
n = 0

and its roots are

s1 = �⇣!n + !n

p
⇣2 � 1 s2 = �⇣!n � !n

p
⇣2 � 1

• There are three types of solutions ✓e(t) to the differential equation, depending on whether the
roots s1, s2 are real and unequal (⇣ > 1), real and equal (⇣ = 1), or complex conjugates (⇣ < 1).
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1. Overdamped: ⇣ > 1. The roots s1,2 are real and distinct, and the solution is

✓e(t) = c1e
s1t + c2e

s2t

– The response is the sum of two decaying exponentials, with time constants t1 = � 1
s1

(slow)
and t2 = � 1

s2
.

– The initial conditions for the (unit) error response are ✓e(0) = 1 and. ✓̇e(0) = 0, and the
constants c1 and c2 can be calculated as

c1 =
1

2
+

⇣

2
p
⇣2 � 1

c2 =
1

2
� ⇣

2
p

⇣2 � 1
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2. Critically damped: ⇣ = 1. The roots s1, s2 = �!n are equal and real, and the solution is

✓e(t) = (c1 + c2t)e
�!nt

– The time constant of the decaying exponential is t = 1
!n

.
– For the error response with ✓e(0) = 1 and ✓̇e(0) = 0,

c1 = 1 c2 = !n

3. Underdamped: ⇣ < 1. The roots are complex conjugates at s1,2 = �⇣!n ± j!d where !d =
!n

p
1� ⇣2 is the damped natural frequency. The solution is

✓e(t) = e�⇣!nt(c1 cos!dt+ c2 sin!dt)

– A decaying exponential (time constant t = 1
⇣!n

multiplied by a sinusoid.
– For the error response with ✓e(0) = 1 and ✓̇e(0) = 0,

c1 = 1 c2 =
⇣p

1� ⇣2

• Example root locations for the overdamped, critically damped, and underdamped cases, as well
as their error responses ✓e(t), are shown in the following figure.
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• The figure also shows the relationship between the root locations and properties of the transient
response:

– roots further to the left in the complex plane correspond to shorter settling times,
– roots further away from the real axis correspond to greater overshoot and oscillation.

• In the case of underdamped, there is the peak of the overshoot, and it occurs at the time tp, and
substituting this into the underdamped error response, we get

tp =
⇡

!d
! ✓e(tp) = �e

� ⇡⇣p
1�⇣2

• Thus ⇣ = 0.1 gives an overshoot of 73%, ⇣ = 0.5 gives an overshoot of 16%, and ⇣ = 0.8 gives an
overshoot of 1.5%.
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