3 Newton-Euler Inverse Dynamics

- Consider the inverse dynamics (ID) problem for an n-link open chain connected by one-dof joints.
- Given the joint positions $\theta \in \Re^{n}$, velocities $\dot{\theta} \in \Re^{n}$, and accelerations $\ddot{\theta} \in \Re^{n}$, the objective is to calculate the right-hand side of the dynamics equation, ultimately to obtain τ

$$
\tau=M(\theta) \ddot{\theta}+h(\theta, \dot{\theta})
$$

- Main result is a recursive ID algorithm consisting of a forward and a backward iteration stage.
- In the forward iteration, the positions, velocities, and accelerations of each link are propagated from the base to the tip
- In the backward iteration, the forces and moments experienced by each link are propagated from the tip to the base.

3.1 Derivation

- A body-fixed reference frame $\{\mathbf{i}\}$ is attached to the center of mass (CoM) of each link $i, i=1, \cdots, n$.
- The base frame is denoted $\{0\}$, and a frame at the end-effector is denoted $\{n+1\}$, which is fixed in $\{\mathrm{n}\}$.
- When the manipulator is at the home position, with all joint variables zero,

$$
\begin{gathered}
M_{i, j} \in S E(3): \text { configuration of frame }\{\mathrm{j}\} \text { in the frame }\{\mathrm{i}\} \\
M_{i}=M_{0, i}: \text { configuration of }\{\mathrm{i}\} \text { in the base frame }\{0\}
\end{gathered}
$$

- With these definitions, $M_{i-1, i}$ and $M_{i, i-1}$ can be calculated as

$$
M_{i-1, i}=M_{i-1}^{-1} M_{i} \quad \text { and } \quad M_{i, i-1}=M_{i}^{-1} M_{i-1}
$$

- The screw axis for joint i, expressed in the link frame $\{\mathrm{i}\}$, is \mathcal{A}_{i}. This same screw axis is expressed in the space (or base) frame $\{0\}$ as \mathcal{S}_{i}, where the two are related by

$$
\mathcal{A}_{i}=A d_{M_{i}^{-1}}\left(\mathcal{S}_{i}\right)
$$

- Defining $T_{i, j} \in S E(3)$ to be the configuration of frame $\{\mathbf{j}\}$ in $\{\mathbf{i}\}$ for arbitrary joint variables θ then $T_{i-1, i}\left(\theta_{i}\right)$, the configuration of $\{\mathbf{i}\}$ relative to $\{i-1\}$ given the joint variable θ_{i}, and $T_{i, i-1}\left(\theta_{i}\right)=$ $T_{i-1, i}^{-1}\left(\theta_{i}\right)$ are calculated as

$$
T_{i-1, i}\left(\theta_{i}\right)=M_{i-1, i} e^{\left[\mathcal{A}_{i}\right] \theta_{i}} \quad \text { and } \quad T_{i, i-1}\left(\theta_{i}\right)=e^{-\left[\mathcal{A}_{i}\right] \theta_{i}} M_{i, i-1}
$$

- We further adopt the following notation:

1. The twist of link frame $\{\mathbf{i}\}$, expressed in frame- $\{\mathrm{i}\}$ coordinates, is denoted $\mathcal{V}_{i}=\left(\omega_{i}, v_{i}\right)$
2. The wrench transmitted through joint i to link frame $\{\mathrm{i}\}$, expressed in frame- $\{\mathrm{i}\}$ coordinates, is denoted $\mathcal{F}_{i}=\left(m_{i}, f_{i}\right)$.
3. Let $\mathcal{G}_{i} \in \Re^{6 \times 6}$ denote the spatial inertia matrix of link i, expressed relative to link frame $\{\mathrm{i}\}$. Since we are assuming that all link frames are situated at the link $\operatorname{CoM}, \mathcal{G}_{i}$ has the blockdiagonal form

$$
\mathcal{G}_{i}=\left[\begin{array}{cc}
\mathcal{I}_{i} & 0_{3 \times 3} \\
0_{3 \times 3} & \mathrm{~m}_{i} I
\end{array}\right]
$$

where \mathcal{I}_{i} denotes the 3×3 rotational inertia matrix of link i and m_{i} is the link mass.

- With these definitions, we can recursively calculate the twist and acceleration of each link, moving from the base to the tip.
- The twist \mathcal{V}_{i} of link i is the sum of the twist of link $i-1$, but expressed in $\{\mathbf{i}\}$, and the added twist due to the joint rate $\dot{\theta}_{i}$:

$$
\mathcal{V}_{i}=\mathcal{A}_{i} \dot{\theta}_{i}+\left[A d_{T_{i, i-1}}\right] \mathcal{V}_{i-1}
$$

- The accelerations $\dot{\mathcal{V}}_{i}$ can also be found recursively. Taking the time derivative, we get

$$
\dot{\mathcal{V}}_{i}=\mathcal{A}_{i} \ddot{\theta}_{i}+\left[A d_{T_{i, i-1}}\right] \dot{\mathcal{V}}_{i-1}+\frac{d}{d t}\left(\left[A d_{T_{i, i-1}}\right]\right) \mathcal{V}_{i-1}
$$

- To calculate the final term in this equation, we express $T_{i, i-1}$ and \mathcal{A}_{i} as

$$
T_{i, i-1}=\left[\begin{array}{cc}
R_{i, i-1} & p \\
0_{3 \times 1} & 1
\end{array}\right] \quad \text { and } \quad \mathcal{A}_{i}=\left[\begin{array}{l}
\omega \\
v
\end{array}\right]
$$

Then

$$
\begin{aligned}
\frac{d}{d t}\left(\left[A d_{T_{i, i-1}}\right]\right) \mathcal{V}_{i-1} & =\frac{d}{d t}\left(\left[\begin{array}{cc}
R_{i, i-1} & 0_{3 \times 3} \\
{[p] R_{i, i-1}} & R_{i, i-1}
\end{array}\right]\right) \mathcal{V}_{i-1} \\
& =\left[\begin{array}{cc}
-\left[\omega \dot{\theta}_{i}\right] R_{i, i-1} & 0_{3 \times 3} \\
-\left[v \dot{\theta}_{i}\right] R_{i, i-1}-\left[\omega \dot{\theta}_{i}\right][p] R_{i, i-1} & -\left[\omega \dot{\theta}_{i}\right] R_{i, i-1}
\end{array}\right] \mathcal{V}_{i-1} \\
& =\left[\begin{array}{cc}
-\left[\omega \dot{\theta}_{i}\right] & 0_{3 \times 3} \\
-\left[v \dot{\theta}_{i}\right] & -\left[\omega \dot{\theta}_{i}\right]
\end{array}\right]\left[\begin{array}{cc}
R_{i, i-1} & 0_{3 \times 3} \\
{[p] R_{i, i-1}} & R_{i, i-1}
\end{array}\right] \mathcal{V}_{i-1}=-\left[a d_{\mathcal{A}_{i} \dot{\theta}_{i}}\right] \mathcal{V}_{i}=\left[a d_{\mathcal{V}_{i}}\right] \mathcal{A}_{i} \dot{\theta}_{i}
\end{aligned}
$$

- Substituting this result into acceleration, we get

$$
\dot{\mathcal{V}}_{i}=\mathcal{A}_{i} \ddot{\theta}_{i}+\left[A d_{T_{i, i-1}}\right] \dot{\mathcal{V}}_{i-1}+\left[a d_{\mathcal{V}_{i}}\right] \mathcal{A}_{i} \dot{\theta}_{i}
$$

i.e., the acceleration of link i is the sum of three components: a component due to the joint acceleration $\ddot{\theta}_{i}$, a component due to the acceleration of link $i-1$ expressed in $\{\mathbf{i}\}$, and a velocityproduct component.

Figure 8.6: Free-body diagram illustrating the moments and forces exerted on link
${ }_{i}$.

- Once we have determined all the link twists and accelerations moving outward from the base, we can calculate the joint torques or forces by moving inward from the tip.
- The total wrench acting on link i is the sum of the wrench \mathcal{F}_{i} transmitted through joint i and the wrench applied to the link through joint $i+1$ (or, for link n, the wrench applied to the link by the environment at the end-effector frame $\{n+1\}$), expressed in the frame i.

$$
\mathcal{F}_{b}=\mathcal{G}_{b} \dot{\mathcal{V}}_{b}-\left[a d_{\mathcal{V}_{b}}\right]^{T} \mathcal{G}_{b} \mathcal{V}_{b} \quad \rightarrow \quad \mathcal{G}_{i} \dot{\mathcal{V}}_{i}-a d_{\mathcal{V}_{i}}^{T}\left(\mathcal{G}_{i} \mathcal{V}_{i}\right)=\mathcal{F}_{i}-A d_{T_{i+1, i}}^{T}\left(\mathcal{F}_{i+1}\right)
$$

- Solving from the tip toward the base, at each link i we solve for the only unknown \mathcal{F}_{i}.
- Since joint i has only one-dof, five dimensions of the six-vector \mathcal{F}_{i} are provided by the structure of the joint, and the actuator only has to provide the scalar force or torque in the direction of the joint's screw axis:

$$
\tau_{i}=\mathcal{F}_{i}^{T} \mathcal{A}_{i}
$$

where it provides the torques required at each joint, solving the ID problem.

3.2 Newton-Euler Inverse Dynamics (ID) Algorithm

- Initialization

1. Attach a frame $\{0\}$ to the base, frames $\{1\}$ to $\{n\}$ to the CoM of links $\{1\}$ to $\{n\}$, and a frame $\{n+1\}$ at the end-effector, fixed in the frame $\{n\}$.
2. Define $M_{i, i-1}$ to be the configuration of $\{i-1\}$ in $\{\mathbf{i}\}$ when $\theta_{i}=0$.
3. Let \mathcal{A}_{i} be the screw axis of joint i expressed in $\{\mathrm{i}\}$, and \mathcal{G}_{i} be the 6×6 spatial inertia matrix of link i.
4. Define \mathcal{V}_{0} to be the twist of the base frame $\{0\}$ expressed in $\{0\}$ coordinates. (It is typically zero.)
5. Let $g \in \Re^{3}$ be the gravity vector expressed in base-frame coordinates, and define $\dot{\mathcal{V}}_{0}=\left(\dot{\omega}_{0}, \dot{v}_{0}\right)=$ $(0,-g)$. (Gravity is treated as an acceleration of the base in the opposite direction.)
6. Define $\mathcal{F}_{n+1}=\mathcal{F}_{\text {tip }}=\left(m_{\text {tip }}, f_{t i p}\right)$ to be the wrench applied to the environment by the endeffector, expressed in the end-effector frame $\{n+1\}$.

- Forward iterations : Given $\theta_{i}, \dot{\theta}_{i}, \ddot{\theta}_{i}$, for $i=1$ to n do

$$
\begin{aligned}
T_{i, i-1}\left(\theta_{i}\right) & =e^{-\left[\mathcal{A}_{i}\right] \theta_{i}} M_{i, i-1} \\
\mathcal{V}_{i} & =A d_{T_{i, i-1}}\left(\mathcal{V}_{i-1}\right)+\mathcal{A}_{i} \dot{\theta}_{i} \\
\dot{\mathcal{V}}_{i} & =A d_{T_{i, i-1}}\left(\dot{\mathcal{V}}_{i-1}\right)+a d_{\mathcal{V}_{i}}\left(\mathcal{A}_{i}\right) \dot{\theta}_{i}+\mathcal{A}_{i} \ddot{\theta}_{i}
\end{aligned}
$$

- Backward iterations : Given \mathcal{F}_{i+1}, for $i=n$ to 1 do

$$
\begin{aligned}
\mathcal{F}_{i} & =A d_{T_{i+1, i}}^{T}\left(\mathcal{F}_{i+1}\right)+\mathcal{G}_{i} \dot{\mathcal{V}}_{i}-a d_{\mathcal{V}_{i}}^{T}\left(\mathcal{G}_{i} \mathcal{V}_{i}\right) \\
\tau_{i} & =\mathcal{F}_{i}^{T} \mathcal{A}_{i}
\end{aligned}
$$

4 Dynamic Equations in Closed Form

- The recursive ID algorithm is organized into a closed-form set of dynamics equations

$$
\tau=M(\theta) \ddot{\theta}+c(\theta, \dot{\theta})+g(\theta)
$$

- The sum of the kinetic energies of each link should be equal to $\frac{1}{2} \dot{\theta}^{T} M(\theta) \dot{\theta}$

$$
\mathcal{K}=\frac{1}{2} \sum_{i=1}^{n} \mathcal{V}_{i}^{T} \mathcal{G}_{i} \mathcal{V}_{i}
$$

where \mathcal{V}_{i} is the twist of link frame $\{\mathrm{i}\}$ and \mathcal{G}_{i} is the spatial inertia matrix of link i (both are expressed in link-frame-\{i\} coordinates).

- Let $T_{0 i}\left(\theta_{1}, \cdots, \theta_{i}\right)$ denote the forward kinematics from the base frame $\{0\}$ to link frame $\{\mathbf{i}\}$, and let $J_{i b}(\theta)$ denote the body Jacobian obtained from $T_{0 i}^{-1} \dot{T}_{0 i}$.
- Note that $J_{i b}$ as defined is a $6 \times i$ matrix; we turn it into a $6 \times n$ matrix by filling in all entries of the last $n-i$ columns with zeros.

$$
\mathcal{V}_{i}=J_{i b}(\theta) \dot{\theta}
$$

- The kinetic energy can then be written

$$
\mathcal{K}=\frac{1}{2} \dot{\theta}^{T}\left(\sum_{i=1}^{n} J_{i b}^{T}(\theta) \mathcal{G}_{i} J_{i b}(\theta)\right) \dot{\theta} \quad \rightarrow \quad M(\theta)=\sum_{i=1}^{n} J_{i b}^{T}(\theta) \mathcal{G}_{i} J_{i b}(\theta)
$$

- Let us derive a closed-form set of dynamic equations by defining the following stacked vectors:

$$
\mathcal{V}=\left[\begin{array}{c}
\mathcal{V}_{1} \\
\vdots \\
\mathcal{V}_{n}
\end{array}\right] \in \Re^{6 n}
$$

$$
\mathcal{F}=\left[\begin{array}{c}
\mathcal{F}_{1} \\
\vdots \\
\mathcal{F}_{n}
\end{array}\right] \in \Re^{6 n}
$$

- Further, define the following matrices:

$$
\begin{aligned}
\mathcal{A} & =\left[\begin{array}{cccc}
\mathcal{A}_{1} & 0_{6 \times 1} & \cdots & 0_{6 \times 1} \\
0_{6 \times 1} & \mathcal{A}_{2} & \cdots & 0_{6 \times 16} \\
\vdots & \vdots & \ddots & \vdots \\
0_{6 \times 1} & \cdots & \cdots & \mathcal{A}_{n}
\end{array}\right] \in \Re^{6 n \times n} \quad \mathcal{G}=\left[\begin{array}{cccc}
\mathcal{G}_{1} & 0_{6 \times 6} & \cdots & 0_{6 \times 6} \\
0_{6 \times 6} & \mathcal{G}_{2} & \cdots & 0_{6 \times 6} \\
\vdots & \vdots & \ddots & \vdots \\
0_{6 \times 6} & \cdots & \cdots & \mathcal{G}_{n}
\end{array}\right] \in \Re^{6 n \times 6 n} \\
{\left[a d_{\mathcal{V}}\right] } & =\left[\begin{array}{cccc}
{\left[a d_{\nu_{1}}\right]} & 0_{6 \times 6} & \cdots & 0_{6 \times 6} \\
0_{6 \times 6} & {\left[a d_{\nu_{2}}\right]} & \cdots & 0_{6 \times 6} \\
\vdots & \vdots & \ddots & \vdots \\
0_{6 \times 6} & \cdots & \cdots & {\left[a{\mathcal{V}_{n}}^{2}\right]}
\end{array}\right] \in \Re^{6 n \times 6 n} \quad\left[a d_{\mathcal{A} \dot{\theta}}\right]=\left[\begin{array}{cccc}
{\left[a d_{\mathcal{A}_{1} \dot{\theta}_{1}}\right]} & 0_{6 \times 6} & \cdots & 0_{6 \times 6} \\
0_{6 \times 6} & {\left[a d_{\mathcal{A}_{2} \dot{\theta}_{2}}\right]} & \cdots & 0_{6 \times 6} \\
\vdots & \vdots & \ddots & \vdots \\
0_{6 \times 6} & \cdots & \cdots & {\left[a d_{\mathcal{A}_{n} \dot{\theta}_{n}}\right]}
\end{array}\right] \in \Re^{6 n \times 6 n}
\end{aligned}
$$

- We write $\mathcal{W}(\theta)$ to emphasize the dependence of \mathcal{W} on θ.

$$
\mathcal{W}(\theta)=\left[\begin{array}{ccccc}
0_{6 \times 6} & 0_{6 \times 6} & \cdots & 0_{6 \times 6} & 0_{6 \times 6} \\
{\left[A d_{T_{21}}\right]} & 0_{6 \times 6} & \cdots & 0_{6 \times 6} & 0_{6 \times 6} \\
0_{6 \times 6} & {\left[A d_{T_{32}}\right]} & \cdots & 0_{6 \times 6} & 0_{6 \times 6} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0_{6 \times 6} & 0_{6 \times 6} & \cdots & {\left[A d_{T_{n, n-1}}\right]} & 0_{6 \times 6}
\end{array}\right] \in \Re^{6 n \times 6 n}
$$

- Finally, define the following stacked vectors:

$$
\mathcal{V}_{\text {base }}=\left[\begin{array}{c}
A d_{T_{10}}\left(\mathcal{V}_{0}\right) \\
0_{6 \times 1} \\
\vdots \\
0_{6 \times 1}
\end{array}\right] \in \Re^{6 n} \quad \dot{\mathcal{V}}_{\text {base }}=\left[\begin{array}{c}
A d_{T_{10}}\left(\dot{\mathcal{V}}_{0}\right) \\
0_{6 \times 1} \\
\vdots \\
0_{6 \times 1}
\end{array}\right] \in \Re^{6 n} \quad \mathcal{F}_{\text {tip }}=\left[\begin{array}{c}
0_{6 \times 1} \\
\vdots \\
0_{6 \times 1} \\
A d_{T_{n+1, n}}^{T}\left(\mathcal{F}_{n+1}\right)
\end{array}\right] \in \Re^{6 n}
$$

Note that $\mathcal{A} \in \Re^{6 n \times n}$ and $\mathcal{G} \in \Re^{6 n \times 6 n}$ are constant block-diagonal matrices.

- With the above definitions, our earlier recursive inverse dynamics algorithm can be assembled into the following set of matrix equations:

$$
\begin{aligned}
\mathcal{V} & =\mathcal{W}(\theta) \mathcal{V}+\mathcal{A} \dot{\theta}+\mathcal{V}_{\text {base }} \\
\dot{\mathcal{V}} & =\mathcal{W}(\theta) \dot{\mathcal{V}}+\mathcal{A} \ddot{\theta}-\left[a d_{\mathcal{A} \dot{\theta}}\right]\left(\mathcal{W}(\theta) \mathcal{V}+\mathcal{V}_{\text {base }}\right)+\dot{\mathcal{V}}_{\text {base }} \\
\mathcal{F} & =\mathcal{W}(\theta)^{T} \mathcal{F}+\mathcal{G} \dot{\mathcal{V}}-\left[a d_{\mathcal{V}}\right]^{T} \mathcal{G} \mathcal{V}+\mathcal{F}_{\text {tip }} \\
\tau & =\mathcal{A}^{T} \mathcal{F}
\end{aligned}
$$

- The matrix $\mathcal{W}(\theta)$ has the property that $\mathcal{W}^{n}(\theta)=0_{6 n \times 6 n}$ (such a matrix is said to be nilpotent of order n), and one consequence verifiable through direct calculation is that

$$
\begin{aligned}
\left(I_{6 n \times 6 n}-\mathcal{W}\right)^{-1} & =I_{6 n \times 6 n}+\mathcal{W}+\mathcal{W}^{2}+\cdots+\mathcal{W}^{n-1}=\mathcal{L}(\theta) \\
& =\left[\begin{array}{ccccc}
I_{6 \times 6} & 0_{6 \times 6} & 0_{6 \times 6} & \cdots & 0_{6 \times 6} \\
{\left[A d_{T_{21}}\right]} & I_{6 \times 6} & 0_{6 \times 6} & \cdots & 0_{6 \times 6} \\
{\left[A d_{T_{31}}\right]} & {\left[A d_{T_{32}}\right]} & I_{6 \times 6} & \cdots & 0_{6 \times 6} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
{\left[A d_{T_{n 1}}\right]} & {\left[A d_{T_{n 2}}\right]} & {\left[A d_{T_{n, 3}}\right]} & \cdots & I_{6 \times 6}
\end{array}\right] \in \Re^{6 n \times 6 n}
\end{aligned}
$$

- The earlier matrix equations can now be reorganized as follows:

$$
\begin{aligned}
\mathcal{V} & =\mathcal{L}(\theta)\left(\mathcal{A} \dot{\theta}+\mathcal{V}_{\text {base }}\right) \\
\dot{\mathcal{V}} & =\mathcal{L}(\theta)\left(\mathcal{A} \ddot{\theta}-\left[a d_{\mathcal{A} \dot{\theta}}\right]\left(\mathcal{W}(\theta) \mathcal{V}+\mathcal{V}_{\text {base }}\right)+\dot{\mathcal{V}}_{\text {base }}\right) \\
\mathcal{F} & =\mathcal{L}(\theta)^{T}\left(\mathcal{G} \dot{\mathcal{V}}-\left[a d_{\mathcal{V}}\right]^{T} \mathcal{G} \mathcal{V}+\mathcal{F}_{\text {tip }}\right) \\
\tau & =\mathcal{A}^{T} \mathcal{F}
\end{aligned}
$$

- If the robot applies an external wrench $\mathcal{F}_{\text {tip }}$ at the end-effector, this can be included into the dynamics equation

$$
\tau=M(\theta) \ddot{\theta}+c(\theta, \dot{\theta})+g(\theta)+J^{T}(\theta) \mathcal{F}_{t i p}
$$

where $J(\theta)$ denotes the Jacobian of the FK expressed in the same reference frame as $\mathcal{F}_{\text {tip }}$, and

$$
\begin{aligned}
M(\theta) & =\mathcal{A}^{T} \mathcal{L}^{T}(\theta) \mathcal{G} \mathcal{L}(\theta) \mathcal{A} \\
c(\theta, \dot{\theta}) & =-\mathcal{A}^{T} \mathcal{L}^{T}\left(\mathcal{G} \mathcal{L}(\theta)\left[a d_{\mathcal{A} \dot{\theta}}\right] \mathcal{W}(\theta)+\left[a d_{\mathcal{V}}\right]^{T} \mathcal{G}\right) \mathcal{L}(\theta) \mathcal{A} \dot{\theta} \\
g(\theta) & =\mathcal{A}^{T} \mathcal{L}^{T}(\theta) \mathcal{G} \mathcal{L}(\theta) \dot{\mathcal{V}}_{\text {base }}
\end{aligned}
$$

5 Forward Dynamics of Open Chain

- The forward dynamics (FD) problem involves solving

$$
M(\theta) \ddot{\theta}=\tau(t)-h(\theta, \dot{\theta})-J^{T}(\theta) \mathcal{F}_{t i p}
$$

for $\ddot{\theta}$, given $\theta, \dot{\theta}, \tau$ and the wrench $\mathcal{F}_{t i p}$ applied by the end-effector (if applicable).

- Term $h(\theta, \dot{\theta})$ can be computed by calling the ID algorithm with $\ddot{\theta}=0$ and $\mathcal{F}_{\text {tip }}=0$.
- The inertia matrix $M(\theta)$ can be computed by n calling of the inverse dynamics algorithm to build $M(\theta)$ column by column.

1. In each of the n calls, set $g=0, \dot{\theta}=0$, and $\mathcal{F}_{t i p}=0$.
2. In the first call, the column vector $\ddot{\theta}$ is all zeros except for a 1 in the first row.
3. In the second call, $\ddot{\theta}$ is all zeros except for a 1 in the second row, and so on.
4. The τ vector returned by the i th call is the i th column of $M(\theta)$, and after n calls the $n \times n$ matrix $M(\theta)$ is constructed.

- With $M(\theta), h(\theta, \dot{\theta})$, and $\mathcal{F}_{\text {tip }}$, we can use any efficient algorithm for solving the equation of the form $M(\theta) \ddot{\theta}=b$, for $\ddot{\theta}$.
- The FD can be used to simulate the motion of the robot given its initial state, the joint forcestorques $\tau(t)$, and an optional external wrench $\mathcal{F}_{\text {tip }}(t)$, for $t \in\left[0, t_{f}\right]$.
- First define the function ForwardDynamics returning the solution:

$$
\ddot{\theta}=F D\left(\theta, \dot{\theta}, \tau, \mathcal{F}_{t i p}\right)
$$

- Defining the variables $q_{1}=\theta, q_{2}=\dot{\theta}$, the second-order dynamics can be converted to two first-order differential equations,

$$
\begin{aligned}
& \dot{q}_{1}=q_{2} \\
& \dot{q}_{2}=F D\left(\theta, \dot{\theta}, \tau, \mathcal{F}_{t i p}\right)
\end{aligned}
$$

- The Euler integration of the robot dynamics is used

$$
\begin{aligned}
& q_{1}(t+\delta t)=q_{1}(t)+q_{2}(t) \delta t \\
& q_{2}(t+\delta t)=q_{2}(t)+F D\left(\theta, \dot{\theta}, \tau, \mathcal{F}_{t i p}\right) \delta t
\end{aligned}
$$

Given a set of initial values for $q_{1}(0)=\theta(0)$ and $q_{2}(0)=\dot{\theta}(0)$, the above equations can be iterated forward in time to obtain the motion $\theta(t)=q_{1}(t)$ numerically.

- Euler Integration Algorithm for FD

1. Inputs: The initial conditions $\theta(0)$ and $\dot{\theta}(0)$, the input torques $\tau(t)$ and wrenches at the endeffector $\mathcal{F}_{\text {tip }}(t)$ for $t \in\left[0, t_{f}\right]$, and the number of integration steps N.
2. Initialization: Set the timestep $\delta t=\frac{t_{f}}{N}$, and set $\theta[0]=\theta(0), \dot{\theta}[0]=\dot{\theta}(0)$
3. Iteration: For $k=0$ to $N-1$ do

$$
\begin{aligned}
\ddot{\theta}[k] & =F D\left(\theta[k], \dot{\theta}[k], \tau(k \delta t), \mathcal{F}_{t i p}(k \delta)\right) \\
\theta[k+1] & =\theta[k]+\dot{\theta}[k] \delta t \\
\dot{\theta}[k+1] & =\dot{\theta}[k]+\ddot{\theta}[k] \delta t
\end{aligned}
$$

4. Output: The joint trajectory $\theta(k \delta)=\theta[k], \dot{\theta}(k \delta t)=\dot{\theta}[k]$, for $k=0, \cdots, N$.

- The result of the numerical integration converges to the theoretical result as the number of integration steps N goes to infinity.
- Higher-order numerical integration schemes, such as fourth-order Runge-Kutta, can yield a closer approximation with fewer computations than the simple first-order Euler method.

6 Dynamics in the Task Space

- The dynamic equations change under a transformation to coordinates of the end-effector frame (task-space coordinates).
- Consider a six-dof open chain with joint space dynamics

$$
\tau=M(\theta) \ddot{\theta}+h(\theta, \dot{\theta}) \quad \theta \in \Re^{6} \quad \tau \in \Re^{6}
$$

- The twist $\mathcal{V}=(\omega, v)$ of the end-effector is related to the joint velocity $\dot{\theta}$ by

$$
\mathcal{V}=J(\theta) \dot{\theta}
$$

where \mathcal{V} and $J(\theta)$ are always expressed in terms of the same reference frame.

- The time derivative $\dot{\mathcal{V}}$ is then

$$
\dot{\mathcal{V}}=\dot{J}(\theta) \dot{\theta}+J(\theta) \ddot{\theta}
$$

- At configurations θ where $J(\theta)$ is invertible, we have

$$
\dot{\theta}=J^{-1} \mathcal{V} \quad \ddot{\theta}=J^{-1}\left[\dot{\mathcal{V}}-\dot{J} J^{-1} \mathcal{V}\right]
$$

- Substituting for $\dot{\theta}$ and $\ddot{\theta}$ leads to

$$
\tau=M(\theta)\left[J^{-1} \dot{\mathcal{V}}-J^{-1} \dot{J} J^{-1} \mathcal{V}\right]+h\left(\theta, J^{-1} \mathcal{V}\right)
$$

- Pre-multiply both sides by J^{-T} to get

$$
J^{-T} \tau=J^{-T} M J^{-1} \dot{\mathcal{V}}-J^{-T} M J^{-1} \dot{J} J^{-1} \mathcal{V}+J^{-T} h\left(\theta, J^{-1} \mathcal{V}\right)
$$

- Expressing $J^{-T} \tau$ as the wrench \mathcal{F}, the above can be written

$$
\mathcal{F}=\Lambda(\theta) \dot{\mathcal{V}}+\eta(\theta, \mathcal{V})
$$

where

$$
\Lambda(\theta)=J^{-T} M J^{-1} \quad \eta(\theta, \mathcal{V})=J^{-T} h\left(\theta, J^{-1} \mathcal{V}\right)-\Lambda(\theta) \dot{J} J^{-1} \mathcal{V}
$$

These are the dynamic equations expressed in end-effector frame coordinates.

- If an external wrench \mathcal{F} is applied to the end-effector frame then, assuming the actuators provide zero forces and torques, the motion of the end-effector frame is governed by these equations.
- Note that $J(\theta)$ must be invertible (i.e., there must be a one-to-one mapping between joint velocities and end-effector twists) in order to derive the task space dynamics above.

7 Homework : Chapter 8

- Please solve and submit Exercise 8.1, 8.2, 8.4, 8.6, 8.7 (upload it as a pdf form or email me)

