
3 Newton-Euler Inverse Dynamics
• Consider the inverse dynamics (ID) problem for an n-link open chain connected by one-dof joints.

• Given the joint positions ✓ 2 <n, velocities ✓̇ 2 <n, and accelerations ✓̈ 2 <n, the objective is to
calculate the right-hand side of the dynamics equation, ultimately to obtain ⌧

⌧ = M(✓)✓̈ + h(✓, ✓̇)

• Main result is a recursive ID algorithm consisting of a forward and a backward iteration stage.

– In the forward iteration, the positions, velocities, and accelerations of each link are propa-
gated from the base to the tip

– In the backward iteration, the forces and moments experienced by each link are propagated
from the tip to the base.
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3.1 Derivation
• A body-fixed reference frame {i} is attached to the center of mass (CoM) of each link i, i = 1, · · · , n.

• The base frame is denoted {0}, and a frame at the end-effector is denoted {n+1}, which is fixed
in {n}.

• When the manipulator is at the home position, with all joint variables zero,

Mi,j 2 SE(3) : configuration of frame {j} in the frame {i}

Mi = M0,i : configuration of {i} in the base frame {0}

• With these definitions, Mi�1,i and Mi,i�1 can be calculated as

Mi�1,i = M�1
i�1Mi and Mi,i�1 = M�1

i Mi�1

• The screw axis for joint i, expressed in the link frame {i}, is Ai. This same screw axis is expressed
in the space (or base) frame {0} as Si, where the two are related by

Ai = AdM�1
i
(Si)

• Defining Ti,j 2 SE(3) to be the configuration of frame {j} in {i} for arbitrary joint variables ✓
then Ti�1,i(✓i), the configuration of {i} relative to {i�1} given the joint variable ✓i, and Ti,i�1(✓i) =
T�1
i�1,i(✓i) are calculated as

Ti�1,i(✓i) = Mi�1,ie
[Ai]✓i and Ti,i�1(✓i) = e�[Ai]✓iMi,i�1
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• We further adopt the following notation:

1. The twist of link frame {i}, expressed in frame-{i} coordinates, is denoted Vi = (!i, vi)

2. The wrench transmitted through joint i to link frame {i}, expressed in frame-{i} coordinates,
is denoted Fi = (mi, fi).

3. Let Gi 2 <6⇥6 denote the spatial inertia matrix of link i, expressed relative to link frame {i}.
Since we are assuming that all link frames are situated at the link CoM, Gi has the block-
diagonal form

Gi =

"
Ii 03⇥3

03⇥3 miI

#

where Ii denotes the 3⇥ 3 rotational inertia matrix of link i and mi is the link mass.

• With these definitions, we can recursively calculate the twist and acceleration of each link, mov-
ing from the base to the tip.

• The twist Vi of link i is the sum of the twist of link i � 1, but expressed in {i}, and the added
twist due to the joint rate ✓̇i :

Vi = Ai✓̇i + [AdTi,i�1]Vi�1

• The accelerations V̇i can also be found recursively. Taking the time derivative, we get

V̇i = Ai✓̈i + [AdTi,i�1]V̇i�1 +
d

dt
([AdTi,i�1])Vi�1
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• To calculate the final term in this equation, we express Ti,i�1 and Ai as

Ti,i�1 =

"
Ri,i�1 p

03⇥1 1

#
and Ai =

"
!

v

#

Then

d

dt
([AdTi,i�1])Vi�1 =

d

dt

 "
Ri,i�1 03⇥3

[p]Ri,i�1 Ri,i�1

#!
Vi�1

=

"
�[!✓̇i]Ri,i�1 03⇥3

�[v✓̇i]Ri,i�1 � [!✓̇i][p]Ri,i�1 �[!✓̇i]Ri,i�1

#
Vi�1

=

"
�[!✓̇i] 03⇥3

�[v✓̇i] �[!✓̇i]

#"
Ri,i�1 03⇥3

[p]Ri,i�1 Ri,i�1

#
Vi�1 = �[adAi✓̇i

]Vi = [adVi]Ai✓̇i

• Substituting this result into acceleration, we get

V̇i = Ai✓̈i + [AdTi,i�1]V̇i�1 + [adVi]Ai✓̇i

i.e., the acceleration of link i is the sum of three components: a component due to the joint ac-
celeration ✓̈i, a component due to the acceleration of link i � 1 expressed in {i}, and a velocity-
product component.
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• Once we have determined all the link twists and accelerations moving outward from the base,
we can calculate the joint torques or forces by moving inward from the tip.

• The total wrench acting on link i is the sum of the wrench Fi transmitted through joint i and
the wrench applied to the link through joint i + 1 (or, for link n, the wrench applied to the link
by the environment at the end-effector frame {n+ 1}), expressed in the frame i.

Fb = GbV̇b � [adVb]
TGbVb ! GiV̇i � adTVi

(GiVi) = Fi � AdTTi+1,i
(Fi+1)

• Solving from the tip toward the base, at each link i we solve for the only unknown Fi.

• Since joint i has only one-dof, five dimensions of the six-vector Fi are provided by the structure
of the joint, and the actuator only has to provide the scalar force or torque in the direction of the
joint’s screw axis:

⌧i = FT
i Ai

where it provides the torques required at each joint, solving the ID problem.
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3.2 Newton-Euler Inverse Dynamics (ID) Algorithm
• Initialization

1. Attach a frame {0} to the base, frames {1} to {n} to the CoM of links {1} to {n}, and a
frame {n+ 1} at the end-effector, fixed in the frame {n}.

2. Define Mi,i�1 to be the configuration of {i� 1} in {i} when ✓i = 0.
3. Let Ai be the screw axis of joint i expressed in {i}, and Gi be the 6⇥ 6 spatial inertia matrix

of link i.
4. Define V0 to be the twist of the base frame {0} expressed in {0} coordinates. (It is typically

zero.)
5. Let g 2 <3 be the gravity vector expressed in base-frame coordinates, and define V̇0 = (!̇0, v̇0) =

(0,�g). (Gravity is treated as an acceleration of the base in the opposite direction.)
6. Define Fn+1 = Ftip = (mtip, ftip) to be the wrench applied to the environment by the end-

effector, expressed in the end-effector frame {n+ 1}.

• Forward iterations : Given ✓i, ✓̇i, ✓̈i, for i = 1 to n do

Ti,i�1(✓i) = e�[Ai]✓iMi,i�1

Vi = AdTi,i�1(Vi�1) +Ai✓̇i

V̇i = AdTi,i�1(V̇i�1) + adVi(Ai)✓̇i +Ai✓̈i

• Backward iterations : Given Fi+1, for i = n to 1 do

Fi = AdTTi+1,i
(Fi+1) + GiV̇i � adTVi

(GiVi)

⌧i = FT
i Ai
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4 Dynamic Equations in Closed Form
• The recursive ID algorithm is organized into a closed-form set of dynamics equations

⌧ = M(✓)✓̈ + c(✓, ✓̇) + g(✓)

• The sum of the kinetic energies of each link should be equal to 1
2 ✓̇

TM(✓)✓̇

K =
1

2

nX

i=1

VT
i GiVi

where Vi is the twist of link frame {i} and Gi is the spatial inertia matrix of link i (both are
expressed in link-frame-{i} coordinates).

• Let T0i(✓1, · · · , ✓i) denote the forward kinematics from the base frame {0} to link frame {i}, and
let Jib(✓) denote the body Jacobian obtained from T�1

0i Ṫ0i.

• Note that Jib as defined is a 6 ⇥ i matrix; we turn it into a 6 ⇥ n matrix by filling in all entries
of the last n� i columns with zeros.

Vi = Jib(✓)✓̇

• The kinetic energy can then be written

K =
1

2
✓̇T
 

nX

i=1

JT
ib(✓)GiJib(✓)

!
✓̇ ! M(✓) =

nX

i=1

JT
ib(✓)GiJib(✓)
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• Let us derive a closed-form set of dynamic equations by defining the following stacked vectors:

V =

2

664

V1
...
Vn

3

775 2 <6n F =

2

664

F1
...
Fn

3

775 2 <6n

• Further, define the following matrices:

A =

2

666664

A1 06⇥1 · · · 06⇥1

06⇥1 A2 · · · 06⇥16
... ... . . . ...

06⇥1 · · · · · · An

3

777775
2 <6n⇥n G =

2

666664

G1 06⇥6 · · · 06⇥6

06⇥6 G2 · · · 06⇥6
... ... . . . ...

06⇥6 · · · · · · Gn

3

777775
2 <6n⇥6n

[adV ] =

2

666664

[adV1] 06⇥6 · · · 06⇥6

06⇥6 [adV2] · · · 06⇥6
... ... . . . ...

06⇥6 · · · · · · [adVn]

3

777775
2 <6n⇥6n [adA✓̇] =

2

666664

[adA1✓̇1
] 06⇥6 · · · 06⇥6

06⇥6 [adA2✓̇2
] · · · 06⇥6

... ... . . . ...
06⇥6 · · · · · · [adAn✓̇n

]

3

777775
2 <6n⇥6n
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• We write W(✓) to emphasize the dependence of W on ✓.

W(✓) =

2

66666664

06⇥6 06⇥6 · · · 06⇥6 06⇥6

[AdT21] 06⇥6 · · · 06⇥6 06⇥6

06⇥6 [AdT32] · · · 06⇥6 06⇥6
... ... . . . ... ...

06⇥6 06⇥6 · · · [AdTn,n�1] 06⇥6

3

77777775

2 <6n⇥6n

• Finally, define the following stacked vectors:

Vbase =

2

666664

AdT10(V0)

06⇥1
...

06⇥1

3

777775
2 <6n V̇base =

2

666664

AdT10(V̇0)

06⇥1
...

06⇥1

3

777775
2 <6n Ftip =

2

666664

06⇥1
...

06⇥1

AdTTn+1,n
(Fn+1)

3

777775
2 <6n

Note that A 2 <6n⇥n and G 2 <6n⇥6n are constant block-diagonal matrices.
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• With the above definitions, our earlier recursive inverse dynamics algorithm can be assembled
into the following set of matrix equations:

V = W(✓)V +A✓̇ + Vbase

V̇ = W(✓)V̇ +A✓̈ � [adA✓̇](W(✓)V + Vbase) + V̇base

F = W(✓)TF + GV̇ � [adV ]
TGV + Ftip

⌧ = ATF

• The matrix W(✓) has the property that Wn(✓) = 06n⇥6n (such a matrix is said to be nilpotent of
order n), and one consequence verifiable through direct calculation is that

(I6n⇥6n �W)�1 = I6n⇥6n +W +W2 + · · ·+Wn�1 = L(✓)

=

2

66666664

I6⇥6 06⇥6 06⇥6 · · · 06⇥6

[AdT21] I6⇥6 06⇥6 · · · 06⇥6

[AdT31] [AdT32] I6⇥6 · · · 06⇥6
... ... ... . . . ...

[AdTn1] [AdTn2] [AdTn,3] · · · I6⇥6

3

77777775

2 <6n⇥6n
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• The earlier matrix equations can now be reorganized as follows:

V = L(✓)(A✓̇ + Vbase)

V̇ = L(✓)(A✓̈ � [adA✓̇](W(✓)V + Vbase) + V̇base)

F = L(✓)T (GV̇ � [adV ]
TGV + Ftip)

⌧ = ATF

• If the robot applies an external wrench Ftip at the end-effector, this can be included into the dy-
namics equation

⌧ = M(✓)✓̈ + c(✓, ✓̇) + g(✓) + JT (✓)Ftip

where J(✓) denotes the Jacobian of the FK expressed in the same reference frame as Ftip, and

M(✓) = ATLT (✓)GL(✓)A

c(✓, ✓̇) = �ATLT (GL(✓)[adA✓̇]W(✓) + [adV ]
TG)L(✓)A✓̇

g(✓) = ATLT (✓)GL(✓)V̇base
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5 Forward Dynamics of Open Chain
• The forward dynamics (FD) problem involves solving

M(✓)✓̈ = ⌧(t)� h(✓, ✓̇)� JT (✓)Ftip

for ✓̈, given ✓, ✓̇, ⌧ and the wrench Ftip applied by the end-effector (if applicable).

• Term h(✓, ✓̇) can be computed by calling the ID algorithm with ✓̈ = 0 and Ftip = 0.

• The inertia matrix M(✓) can be computed by n calling of the inverse dynamics algorithm to build
M(✓) column by column.

1. In each of the n calls, set g = 0, ✓̇ = 0, and Ftip = 0.

2. In the first call, the column vector ✓̈ is all zeros except for a 1 in the first row.
3. In the second call, ✓̈ is all zeros except for a 1 in the second row, and so on.
4. The ⌧ vector returned by the ith call is the ith column of M(✓), and after n calls the n ⇥ n

matrix M(✓) is constructed.

• With M(✓), h(✓, ✓̇), and Ftip, we can use any efficient algorithm for solving the equation of the form
M(✓)✓̈ = b, for ✓̈.
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• The FD can be used to simulate the motion of the robot given its initial state, the joint forces-
torques ⌧(t), and an optional external wrench Ftip(t), for t 2 [0, tf ].

• First define the function ForwardDynamics returning the solution:

✓̈ = FD(✓, ✓̇, ⌧,Ftip)

• Defining the variables q1 = ✓, q2 = ✓̇, the second-order dynamics can be converted to two first-order
differential equations,

q̇1 = q2

q̇2 = FD(✓, ✓̇, ⌧,Ftip)

• The Euler integration of the robot dynamics is used

q1(t+ �t) = q1(t) + q2(t)�t

q2(t+ �t) = q2(t) + FD(✓, ✓̇, ⌧,Ftip)�t.

Given a set of initial values for q1(0) = ✓(0) and q2(0) = ✓̇(0), the above equations can be iterated
forward in time to obtain the motion ✓(t) = q1(t) numerically.

262



• Euler Integration Algorithm for FD

1. Inputs: The initial conditions ✓(0) and ✓̇(0), the input torques ⌧(t) and wrenches at the end-
effector Ftip(t) for t 2 [0, tf ], and the number of integration steps N .

2. Initialization: Set the timestep �t = tf
N , and set ✓[0] = ✓(0), ✓̇[0] = ✓̇(0)

3. Iteration: For k = 0 to N � 1 do

✓̈[k] = FD(✓[k], ✓̇[k], ⌧(k�t),Ftip(k�))

✓[k + 1] = ✓[k] + ✓̇[k]�t

✓̇[k + 1] = ✓̇[k] + ✓̈[k]�t

4. Output: The joint trajectory ✓(k�) = ✓[k], ✓̇(k�t) = ✓̇[k], for k = 0, · · · , N .

• The result of the numerical integration converges to the theoretical result as the number of in-
tegration steps N goes to infinity.

• Higher-order numerical integration schemes, such as fourth-order Runge-Kutta, can yield a closer
approximation with fewer computations than the simple first-order Euler method.
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6 Dynamics in the Task Space
• The dynamic equations change under a transformation to coordinates of the end-effector frame

(task-space coordinates).

• Consider a six-dof open chain with joint space dynamics

⌧ = M(✓)✓̈ + h(✓, ✓̇) ✓ 2 <6 ⌧ 2 <6

• The twist V = (!, v) of the end-effector is related to the joint velocity ✓̇ by

V = J(✓)✓̇

where V and J(✓) are always expressed in terms of the same reference frame.

• The time derivative V̇ is then

V̇ = J̇(✓)✓̇ + J(✓)✓̈

• At configurations ✓ where J(✓) is invertible, we have

✓̇ = J�1V ✓̈ = J�1[V̇ � J̇J�1V ]

• Substituting for ✓̇ and ✓̈ leads to

⌧ = M(✓)[J�1V̇ � J�1J̇J�1V ] + h(✓, J�1V)
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• Pre-multiply both sides by J�T to get

J�T ⌧ = J�TMJ�1V̇ � J�TMJ�1J̇J�1V + J�Th(✓, J�1V)

• Expressing J�T ⌧ as the wrench F , the above can be written

F = ⇤(✓)V̇ + ⌘(✓,V)

where

⇤(✓) = J�TMJ�1 ⌘(✓,V) = J�Th(✓, J�1V)� ⇤(✓)J̇J�1V

These are the dynamic equations expressed in end-effector frame coordinates.

• If an external wrench F is applied to the end-effector frame then, assuming the actuators provide
zero forces and torques, the motion of the end-effector frame is governed by these equations.

• Note that J(✓) must be invertible (i.e., there must be a one-to-one mapping between joint veloci-
ties and end-effector twists) in order to derive the task space dynamics above.
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7 Homework : Chapter 8
• Please solve and submit Exercise 8.1, 8.2, 8.4, 8.6, 8.7 (upload it as a pdf form or email me)
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