2 Dynamics of a Single Rigid Body

2.1 Classical Formulation

- Consider a rigid body consisting of a number of rigidly connected point masses, where point mass i has mass m_{i} and the total mass is $\mathrm{m}=\sum_{i} \mathrm{~m}_{i}$.
- Let $r_{i}=\left(x_{i}, y_{i}, z_{i}\right)$ be the fixed location of mass i in a body frame $\{\mathrm{b}\}$, where the origin of this frame is the unique point such that

$$
\sum_{i} \mathrm{~m}_{i} r_{i}=0
$$

This point is known as the center of mass (CoM). The body frame $\{b\}$ should be chosen at CoM.

- Assume that the body is moving with a body twist $\mathcal{V}_{b}=\left(\omega_{b}, v_{b}\right)$, and let $p_{i}(t)$ be the time-varying position of m_{i}, initially located at r_{i}, in the inertial frame $\{\mathrm{b}\}$. Then

$$
\begin{aligned}
\dot{p}_{i} & =v_{b}+\omega_{b} \times p_{i} \\
\ddot{p}_{i} & =\dot{v}_{b}+\dot{\omega}_{b} \times p_{i}+\omega_{b} \times \dot{p}_{i}=\dot{v}_{b}+\dot{\omega}_{b} \times p_{i}+\omega_{b} \times\left(v_{b}+\omega_{b} \times p_{i}\right) \\
& =\dot{v}_{b}+\left[\dot{\omega}_{b}\right] r_{i}+\left[\omega_{b}\right] v_{b}+\left[\omega_{b}\right]^{2} r_{i}
\end{aligned}
$$

where p_{i} is substituted with r_{i}

- Taking as a given that $f_{i}=\mathrm{m}_{i} \ddot{p}_{i}$ for a point mass, the force and moment acting on m_{i} are

$$
\begin{aligned}
f_{i} & =\mathrm{m}_{i}\left(\dot{v}_{b}+\left[\dot{\omega}_{b}\right] r_{i}+\left[\omega_{b}\right] v_{b}+\left[\omega_{b}\right]^{2} r_{i}\right) \\
m_{i} & =\left[r_{i}\right] f_{i}
\end{aligned}
$$

- The total force and moment acting on the body is expressed as the wrench \mathcal{F}_{b} :

$$
\mathcal{F}_{b}=\left[\begin{array}{c}
m_{b} \\
f_{b}
\end{array}\right]=\left[\begin{array}{c}
\sum_{i} m_{i} \\
\sum_{i} f_{i}
\end{array}\right]
$$

- To simplify the expressions for f_{b} and m_{b}, keep in mind that $\sum_{i} m_{i} r_{i}=0_{3 \times 1}$ (and therefore $\sum_{i} m_{i}\left[r_{i}\right]=$ $0_{3 \times 3}$) and, for $a, b \in \Re^{3},[a]=-[a]^{T},[a] b=-[b] a$, and $[a][b]=([b][a])^{T}$.
- Focusing on the linear dynamics,

$$
\begin{aligned}
f_{b} & =\sum_{i} \mathrm{~m}_{i}\left(\dot{v}_{b}+\left[\dot{\omega}_{b}\right] r_{i}+\left[\omega_{b}\right] v_{b}+\left[\omega_{b}\right]^{2} r_{i}\right) \\
& =\sum_{i} \mathrm{~m}_{i}\left(\dot{v}_{b}+\left[\omega_{b}\right] v_{b}\right)+\sum_{i} \mathrm{~m}_{i}\left[\dot{\omega}_{b}\right] r_{i}+\sum_{i} \mathrm{~m}_{i}\left[\omega_{b}\right]\left[\omega_{b}\right] r_{i} \\
& =\sum_{i} \mathrm{~m}_{i}\left(\dot{v}_{b}+\left[\omega_{b}\right] v_{b}\right)+\left[\dot{\omega}_{b}\right]\left(\sum_{i} \mathrm{~m}_{i} r_{i}\right)+\left[\omega_{b}\right]\left[\omega_{b}\right]\left(\sum_{i} \mathrm{~m}_{i} r_{i}\right) \\
& =\mathrm{m} \dot{v}_{b}+\left[\omega_{b}\right] \mathrm{m} v_{b}
\end{aligned}
$$

- Now focusing on the rotational dynamics,

$$
\begin{aligned}
m_{b} & =\sum_{i}\left[r_{i}\right] f_{i} \\
& =\sum_{i} \mathrm{~m}_{i}\left[r_{i}\right]\left(\dot{v}_{b}+\left[\dot{\omega}_{b}\right] r_{i}+\left[\omega_{b}\right] v_{b}+\left[\omega_{b}\right]^{2} r_{i}\right) \\
& =\left(\sum_{i} \mathrm{~m}_{i}\left[r_{i}\right]\right)\left(\dot{v}_{b}+\left[\omega_{b}\right] v_{b}\right)+\sum_{i} \mathrm{~m}_{i}\left[r_{i}\right]\left[\dot{\omega}_{b}\right] r_{i}+\sum_{i} \mathrm{~m}_{i}\left[r_{i}\right]\left[\omega_{b}\right]^{2} r_{i} \\
& =-\sum_{i} \mathrm{~m}_{i}\left[r_{i}\right]^{2} \dot{\omega}_{b}-\sum_{i} \mathrm{~m}_{i}\left[r_{i}\right]^{T}\left[\omega_{b}\right]^{T}\left[r_{i}\right] \omega_{b} \\
& =-\sum_{i} \mathrm{~m}_{i}\left[r_{i}\right]^{2} \dot{\omega}_{b}-\sum_{i} \mathrm{~m}_{i}\left[\omega_{b}\right]\left[r_{i}\right]^{2} \omega_{b} \\
& =\left(-\sum_{i} \mathrm{~m}_{i}\left[r_{i}\right]^{2}\right) \dot{\omega}_{b}+\left[\omega_{b}\right]\left(-\sum_{i} \mathrm{~m}_{i}\left[r_{i}\right]^{2}\right) \omega_{b} \\
& =\mathcal{I}_{b} \dot{\omega}_{b}+\left[\omega_{b}\right] \mathcal{I}_{b} \omega_{b}
\end{aligned}
$$

where $\mathcal{I}_{b} \in \Re^{3 \times 3}$ is the body's rotational inertia matrix expressed in terms of the CoM. It is known as Euler's equation for a rotating rigid body.

- The rotational kinetic energy is given by the quadratic

$$
\mathcal{K}=\frac{1}{2} \omega_{b}^{T} \mathcal{I}_{b} \omega_{b}
$$

- One difference is that \mathcal{I}_{b} is constant whereas the mass matrix $M(\theta)$ changes with the configuration of the mechanism.
- Writing out the individual entries of \mathcal{I}_{b}, we get

$$
\begin{aligned}
\mathcal{I}_{b} & =-\sum_{i} \mathrm{~m}_{i}\left[r_{i}\right]^{2}=-\sum_{i} \mathrm{~m}_{i}\left[\begin{array}{ccc}
0 & -z_{i} & y_{i} \\
z_{i} & 0 & -x_{i} \\
-y_{i} & x_{i} & 0
\end{array}\right]\left[\begin{array}{ccc}
0 & -z_{i} & y_{i} \\
z_{i} & 0 & -x_{i} \\
-y_{i} & x_{i} & 0
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\sum_{i} \mathrm{~m}_{i}\left(y_{i}^{2}+z_{i}^{2}\right) & -\sum_{i} \mathrm{~m}_{i} x_{i} y_{i} & -\sum_{i} \mathrm{~m}_{i} x_{i} z_{i} \\
-\sum_{i} \mathrm{~m}_{i} x_{i} y_{i} & \sum_{i} \mathrm{~m}_{i}\left(x_{i}^{2}+z_{i}^{2}\right) & -\sum_{i} \mathrm{~m}_{i} y_{i} z_{i} \\
-\sum_{i} \mathrm{~m}_{i} x_{i} z_{i} & -\sum_{i} \mathrm{~m}_{i} y_{i} z_{i} & \sum_{i} \mathrm{~m}_{i}\left(x_{i}^{2}+y_{i}^{2}\right)
\end{array}\right]=\left[\begin{array}{ccc}
\mathcal{I}_{x x} & \mathcal{I}_{x y} & \mathcal{I}_{x z} \\
\mathcal{I}_{x y} & \mathcal{I}_{y y} & \mathcal{I}_{y z} \\
\mathcal{I}_{x z} & \mathcal{I}_{y z} & \mathcal{I}_{z z}
\end{array}\right]
\end{aligned}
$$

- The summations can be replaced by volume integrals over the body \mathcal{B}, using the differential volume element $d V$, with the point masses m_{i} replaced by a mass density function $\rho(x, y, z)=\frac{\mathrm{m}}{V}$:

$$
\begin{aligned}
& \mathcal{I}_{x x}=\int_{\mathcal{B}}\left(y^{2}+z^{2}\right) \rho(x, y, z) d V \\
& \mathcal{I}_{y y}=\int_{\mathcal{B}}\left(x^{2}+z^{2}\right) \rho(x, y, z) d V \\
& \mathcal{I}_{z z}=\int_{\mathcal{B}}\left(x^{2}+y^{2}\right) \rho(x, y, z) d V \\
& \mathcal{I}_{x y}=-\int_{\mathcal{B}} x y \rho(x, y, z) d V \\
& \mathcal{I}_{x z}=-\int_{\mathcal{B}} x z \rho(x, y, z) d V \\
& \mathcal{I}_{y z}=-\int_{\mathcal{B}} y z \rho(x, y, z) d V
\end{aligned}
$$

rectangular parallelepiped:

$$
\text { volume }=a b c,
$$

$$
\mathcal{I}_{x x}=\mathfrak{m}\left(w^{2}+h^{2}\right) / 12
$$

circular cylinder:
volume $=\pi r^{2} h$,
$\mathcal{I}_{x x}=\mathfrak{m}\left(3 r^{2}+h^{2}\right) / 12$,
$\mathcal{I}_{y y}=\mathfrak{m}\left(3 r^{2}+h^{2}\right) / 12$,
$\mathcal{I}_{z z}=\mathfrak{m} r^{2} / 2$
ellipsoid:
volume $=4 \pi a b c / 3$,
$\mathcal{I}_{x x}=\mathfrak{m}\left(3 r^{2}+h^{2}\right) / 12, \quad \mathcal{I}_{x x}=\mathfrak{m}\left(b^{2}+c^{2}\right) / 5$,

$$
\mathcal{I}_{y y}=\mathfrak{m}\left(\ell^{2}+h^{2}\right) / 12
$$

$$
\mathcal{I}_{z z}=\mathfrak{m}\left(\ell^{2}+w^{2}\right) / 12
$$

$\mathcal{I}_{y y}=\mathfrak{m}\left(3 r^{2}+h^{2}\right) / 12, \quad \mathcal{I}_{y y}=\mathfrak{m}\left(a^{2}+c^{2}\right) / 5$,
$\mathcal{I}_{z z}=\mathfrak{m} r^{2} / 2 \quad \mathcal{I}_{z z}=\mathfrak{m}\left(a^{2}+b^{2}\right) / 5$
Figure 8.5: The principal axes and the inertia about the principal axes for uniformdensity bodies of mass \mathfrak{m}. Note that the \hat{x} and \hat{y} principal axes of the cylinder are not unique.

- If the body has uniform density, \mathcal{I}_{b} is determined exclusively by the shape of the rigid body
- One principal axis maximizes the moment of inertia among all axes passing through the CoM, and another minimizes the moment of inertia.
- If the principal axes of inertia are aligned with the axes of $\{\mathrm{b}\}$, the off-diagonal terms of \mathcal{I}_{b} are all zero, and the eigenvalues are the scalar moments of inertia $\mathcal{I}_{x x}, \mathcal{I}_{y y}$ and $\mathcal{I}_{z z}$ about the x-, y-, and z-axes, respectively. In this case, the equations of motion simplify to

$$
\begin{aligned}
m_{b} & =\mathcal{I}_{b} \dot{\omega}_{b}+\left[\omega_{b}\right] \mathcal{I}_{b} \omega_{b} \\
& =\left[\begin{array}{l}
\mathcal{I}_{x x} \dot{\omega}_{x}+\left(\mathcal{I}_{z z}-\mathcal{I}_{y y}\right) \omega_{y} \omega_{z} \\
\mathcal{I}_{y y} \dot{\omega}_{y}+\left(\mathcal{I}_{x x}-\mathcal{I}_{z z}\right) \omega_{x} \omega_{z} \\
\mathcal{I}_{z z} \dot{\omega}_{z}+\left(\mathcal{I}_{y y}-\mathcal{I}_{x x}\right) \omega_{x} \omega_{y}
\end{array}\right]
\end{aligned}
$$

where $\omega_{b}=\left(\omega_{x}, \omega_{y}, \omega_{z}\right)$.

- Inertia matrix \mathcal{I}_{b} can be expressed in a rotated frame $\{\mathrm{c}\}$ described by the rotation matrix $R_{b c}$.
- Since the kinetic energy of the rotating body is independent of the chosen frame, we have

$$
\frac{1}{2} \omega_{c}^{T} \mathcal{I}_{c} \omega_{c}=\frac{1}{2} \omega_{b}^{T} \mathcal{I}_{b} \omega_{b}=\frac{1}{2}\left(R_{b c} \omega_{c}\right)^{T} \mathcal{I}_{b}\left(R_{b c} \omega_{c}\right)=\frac{1}{2} \omega_{c}^{T}\left(R_{b c}^{T} \mathcal{I}_{b} R_{b c}\right) \omega_{c}
$$

- In other words,

$$
\mathcal{I}_{c}=R_{b c}^{T} \mathcal{I}_{b} R_{b c}
$$

If the axes of $\{b\}$ are not aligned with the principal axes of inertia then we can diagonalize the inertia matrix by expressing it instead in the rotated frame $\{\mathrm{c}\}$, where the columns of $R_{b c}$ correspond to the eigenvalues of \mathcal{I}_{b}.

- Sometimes it is convenient to represent the inertia matrix in a frame at a point not at the center of mass of the body, for example at a joint.

Theorem 8.1. (Steiner's theorem) The inertia matrix \mathcal{I}_{q} about a frame aligned with $\{b\}$, but at a point $q=\left(q_{x}, q_{y}, q_{z}\right)$ in $\{b\}$, is related to the inertia matrix \mathcal{I}_{b} calculated at the CoM by

$$
\mathcal{I}_{q}=\mathcal{I}_{b}+\mathrm{m}\left(q^{T} q I_{3 \times 3}-q q^{T}\right)
$$

where I is the 3×3 identity matrix and m is the mass of the body.

- Steiner's theorem is a more general statement of the parallel-axis theorem, which states that the scalar inertia \mathcal{I}_{d} about an axis parallel to, but a distance d from, an axis through the CoM is related to the scalar inertia $\mathcal{I}_{c m}$ about the axis through the CoM by

$$
\mathcal{I}_{d}=\mathcal{I}_{c m}+\mathrm{m} d^{2}
$$

- In the case of motion confined to the x - y-plane, where $\omega_{b}=\left(0,0, \omega_{z}\right)$ and the inertia of the body about the z-axis through the CoM is given by the scalar $\mathcal{I}_{z z}$, the spatial rotational dynamics reduces to the planar rotational dynamics

$$
m_{z}=\mathcal{I}_{z z} \dot{\omega}_{z}
$$

and the rotational kinetic energy is

$$
\mathcal{K}=\frac{1}{2} \mathcal{I}_{z z} \omega_{z}^{2}
$$

2.2 Twist-Wrench Formulation

- The linear dynamics $f_{b}=\mathrm{m} \dot{v}_{b}+\left[\omega_{b}\right] m v_{b}$ and the rotational dynamics $m_{b}=\mathcal{I}_{b} \dot{\omega}_{b}+\left[\omega_{b}\right] \mathcal{I}_{b} \omega_{b}$ can be written in the following combined form:

$$
\left[\begin{array}{c}
m_{b} \\
f_{b}
\end{array}\right]=\left[\begin{array}{cc}
\mathcal{I}_{b} & 0_{3 \times 3} \\
0_{3 \times 3} & \mathrm{~m} I
\end{array}\right]\left[\begin{array}{c}
\dot{\omega}_{b} \\
\dot{v}_{b}
\end{array}\right]+\left[\begin{array}{cc}
{\left[\omega_{b}\right]} & 0_{3 \times 3} \\
0_{3 \times 3} & {\left[\omega_{b}\right]}
\end{array}\right]\left[\begin{array}{cc}
\mathcal{I}_{b} & 0_{3 \times 3} \\
0_{3 \times 3} & \mathrm{~m} I
\end{array}\right]\left[\begin{array}{c}
\omega_{b} \\
v_{b}
\end{array}\right]
$$

where I is the 3×3 identity matrix.

- With the benefit of hindsight, and also making use of the fact that $[v] v=v \times v=0$ and $[v]^{T}=-[v]$, we can write Equation in the following equivalent form:

$$
\begin{aligned}
{\left[\begin{array}{c}
m_{b} \\
f_{b}
\end{array}\right] } & =\left[\begin{array}{cc}
\mathcal{I}_{b} & 0_{3 \times 3} \\
0_{3 \times 3} & \mathrm{~m} I
\end{array}\right]\left[\begin{array}{c}
\dot{\omega}_{b} \\
\dot{v}_{b}
\end{array}\right]+\left[\begin{array}{cc}
{\left[\omega_{b}\right]} & {\left[v_{b}\right]} \\
0_{3 \times 3} & {\left[\omega_{b}\right]}
\end{array}\right]\left[\begin{array}{cc}
\mathcal{I}_{b} & 0_{3 \times 3} \\
0_{3 \times 3} & \mathrm{~m} I
\end{array}\right]\left[\begin{array}{c}
\omega_{b} \\
v_{b}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\mathcal{I}_{b} & 0_{3 \times 3} \\
0_{3 \times 3} & \mathrm{~m} I
\end{array}\right]\left[\begin{array}{c}
\dot{\omega}_{b} \\
\dot{v}_{b}
\end{array}\right]-\left[\begin{array}{cc}
{\left[\omega_{b}\right]} & 0_{3 \times 3} \\
{\left[v_{b}\right]} & {\left[\omega_{b}\right]}
\end{array}\right]\left[\begin{array}{cc}
\mathcal{I}_{b} & 0_{3 \times 3} \\
0_{3 \times 3} & \mathrm{~m} I
\end{array}\right]\left[\begin{array}{c}
\omega_{b} \\
v_{b}
\end{array}\right]
\end{aligned}
$$

- Written this way, each term can now be identified with six-dimensional spatial quantities as follows:

1. The vectors $\left(\omega_{b}, v_{b}\right)$ and $\left(m_{b}, f_{b}\right)$ can be respectively identified with the body twist \mathcal{V}_{b} and body wrench \mathcal{F}_{b},

$$
\mathcal{V}_{b}=\left[\begin{array}{l}
\omega_{b} \\
v_{b}
\end{array}\right] \quad \mathcal{F}_{b}=\left[\begin{array}{c}
m_{b} \\
f_{b}
\end{array}\right]
$$

2. The spatial inertia matrix $\mathcal{G}_{b} \in \Re^{6 \times 6}$ is defined as

$$
\mathcal{G}_{b}=\left[\begin{array}{cc}
\mathcal{I}_{b} & 0_{3 \times 3} \\
0_{3 \times 3} & \mathrm{~m} I
\end{array}\right]
$$

As an aside, the kinetic energy of the rigid body can be expressed in terms of the spatial inertia matrix as

$$
\text { kinetic energy }=\frac{1}{2} \omega_{b}^{T} \mathcal{I}_{b} \omega_{b}+\frac{1}{2} \operatorname{m} v_{b}^{T} v_{b}=\frac{1}{2} \mathcal{V}_{b}^{T} \mathcal{G}_{b} \mathcal{V}_{b}
$$

3. The spatial momentum $\mathcal{P}_{b} \in \Re^{6}$ is defined as

$$
\mathcal{P}_{b}=\mathcal{G}_{b} \mathcal{V}_{b}
$$

- The following matrix can be thought of as a generalization of the cross-product operation to sixdimensional twists.

$$
-\left[\begin{array}{cc}
{\left[\omega_{b}\right]} & 0_{3 \times 3} \\
{\left[v_{b}\right]} & {\left[\omega_{b}\right]}
\end{array}\right]^{T}
$$

First, recall that the cross product of two vectors $\omega_{1}, \omega_{2} \in \Re^{3}$ can be calculated, using the skewsymmetric matrix notation, as follows:

$$
\left[\omega_{1} \times \omega_{2}\right]=\left[\left[\omega_{1}\right] \omega_{2}\right]=\left[\omega_{1}\right]\left[\omega_{2}\right]-\left[\omega_{2}\right]\left[\omega_{1}\right]
$$

Second, given two twists $\mathcal{V}_{1}=\left(\omega_{1}, v_{1}\right)$ and $\mathcal{V}_{2}=\left(\omega_{2}, v_{2}\right)$, we perform a calculation analogous to the above:

$$
\begin{aligned}
{\left[\mathcal{V}_{1}\right]\left[\mathcal{V}_{2}\right]-\left[\mathcal{V}_{2}\right]\left[\mathcal{V}_{1}\right] } & =\left[\begin{array}{cc}
{\left[\omega_{1}\right]} & v_{1} \\
0_{1 \times 3} & 0
\end{array}\right]\left[\begin{array}{cc}
{\left[\omega_{2}\right]} & v_{2} \\
0_{1 \times 3} & 0
\end{array}\right]-\left[\begin{array}{cc}
{\left[\omega_{2}\right]} & v_{2} \\
0_{1 \times 3} & 0
\end{array}\right]\left[\begin{array}{cc}
{\left[\omega_{1}\right]} & v_{1} \\
0_{1 \times 3} & 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
{\left[\omega_{1}\right]\left[\omega_{2}\right]-\left[\omega_{2}\right]\left[\omega_{1}\right]} & {\left[\omega_{1}\right] v_{2}-\left[\omega_{2}\right] v_{1}} \\
0_{1 \times 3} & 0
\end{array}\right]=\left[\begin{array}{cc}
{\left[\omega^{\prime}\right]} & v^{\prime} \\
0_{1 \times 3} & 0
\end{array}\right]
\end{aligned}
$$

which can be written more compactly in vector form as

$$
\left[\begin{array}{c}
\omega^{\prime} \\
v^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
{\left[\omega_{1}\right]} & 0_{3 \times 3} \\
{\left[v_{1}\right]} & {\left[\omega_{1}\right]}
\end{array}\right]\left[\begin{array}{l}
\omega_{2} \\
v_{2}
\end{array}\right]
$$

Generalization of the cross product to two twists \mathcal{V}_{1} and \mathcal{V}_{2} is called the Lie bracket of \mathcal{V}_{1} and \mathcal{V}_{2}.

Definition 8.1. Given two twists $\mathcal{V}_{1}=\left(\omega_{1}, v_{1}\right)$ and $\mathcal{V}_{2}=\left(\omega_{2}, v_{2}\right)$, the Lie bracket of $\mathcal{V}_{1}=\left(\omega_{1}, v_{1}\right)$ and $\mathcal{V}_{2}=\left(\omega_{2}, v_{2}\right)$, written either as $\left[a \nu_{\nu_{1}}\right] \mathcal{V}_{2}$ or $a d_{\nu_{1}}\left(\mathcal{V}_{2}\right)$, is defined as follows:

$$
\left[\begin{array}{ll}
{\left[\omega_{1}\right]} & 0_{3 \times 3} \\
{\left[v_{1}\right]} & {\left[\omega_{1}\right]}
\end{array}\right]\left[\begin{array}{l}
\omega_{2} \\
v_{2}
\end{array}\right]=\left[a d \nu_{\nu_{1}}\right] \mathcal{V}_{2}=a d \nu_{\nu_{1}}\left(\mathcal{V}_{2}\right) \in \Re^{6}
$$

where

$$
\left[a d_{\nu}\right]=\left[\begin{array}{cc}
{[\omega]} & 0_{3 \times 3} \\
{[v]} & {[\omega]}
\end{array}\right] \in \Re^{6 \times 6}
$$

- Using the notation and definitions above, the dynamic equations for a single rigid body can now be written as

$$
\begin{aligned}
{\left[\begin{array}{c}
m_{b} \\
f_{b}
\end{array}\right] } & =\left[\begin{array}{cc}
\mathcal{I}_{b} & 0_{3 \times 3} \\
0_{3 \times 3} & \mathrm{~m} I
\end{array}\right]\left[\begin{array}{c}
\dot{\omega}_{b} \\
\dot{v}_{b}
\end{array}\right]-\left[\begin{array}{ll}
{\left[\omega_{b}\right]} & 0_{3 \times 3} \\
{\left[v_{b}\right]} & {\left[\omega_{b}\right]}
\end{array}\right]^{T}\left[\begin{array}{cc}
\mathcal{I}_{b} & 0_{3 \times 3} \\
0_{3 \times 3} & \mathrm{~m} I
\end{array}\right]\left[\begin{array}{l}
\omega_{b} \\
v_{b}
\end{array}\right] \\
\mathcal{F}_{b} & =\mathcal{G}_{b} \dot{\mathcal{V}}_{b}-a d_{\nu_{b}}^{T}\left(\mathcal{P}_{b}\right) \\
& =\mathcal{G}_{b} \dot{\mathcal{V}}_{b}-\left[a d \nu_{\nu_{b}}\right]^{T} \mathcal{G}_{b} \mathcal{V}_{b}
\end{aligned}
$$

- Note the analogy between above Equation and the moment equation for a rotating rigid body:

$$
\begin{aligned}
m_{b} & =\mathcal{I}_{b} \dot{\omega}_{b}+\left[\omega_{b}\right]_{b} \omega_{b} \\
& =\mathcal{I}_{b} \dot{\omega}_{b}-\left[\omega_{b}\right]^{T} \mathcal{I}_{b} \omega_{b}
\end{aligned}
$$

Definition 8.2. Given a twist $\mathcal{V}=(\omega, v)$ and a wrench $\mathcal{F}=(m, f)$, define the mapping

$$
a d_{\mathcal{V}}^{T}(\mathcal{F})=\left[a d_{\mathcal{V}}\right]^{T} \mathcal{F}=\left[\begin{array}{cc}
{[\omega]} & 0_{3 \times 3} \\
{[v]} & {[\omega]}
\end{array}\right]^{T}\left[\begin{array}{c}
m \\
f
\end{array}\right]=\left[\begin{array}{c}
-[\omega] m-[v] f \\
-[\omega] f
\end{array}\right]
$$

2.3 Dynamics in Other Frames

- The derivation of the dynamic equations relies on the use of a CoM frame $\{b\}$.
- It is straightforward to express the dynamics in other frames. Let's call one such frame $\{a\}$.
- Since the kinetic energy of the rigid body must be independent of the frame of representation,

$$
\begin{aligned}
\frac{1}{2} \mathcal{V}_{a}^{T} \mathcal{G}_{a} \mathcal{V}_{a} & =\frac{1}{2} \mathcal{V}_{b}^{T} \mathcal{G}_{b} \mathcal{V}_{b} \\
& =\frac{1}{2}\left(\left[A d_{T_{b a}}\right] \mathcal{V}_{a}\right)^{T} \mathcal{G}_{b}\left(\left[A d_{T_{b a}}\right] \mathcal{V}_{a}\right) \\
& =\frac{1}{2} \mathcal{V}_{a}^{T}\left(\left[A d_{T_{b a}}\right]^{T} \mathcal{G}_{b}\left[A d_{T_{b a}}\right]\right) \mathcal{V}_{a}
\end{aligned}
$$

for the adjoint representation $A d_{T}$ using $T=\left[\begin{array}{cc}R & p \\ 0_{3 \times 1} & 1\end{array}\right]$

$$
A d_{T}=\left[\begin{array}{cc}
R & 0_{3 \times 3} \\
{[p] R} & R
\end{array}\right]
$$

- In other words, the spatial inertia matrix \mathcal{G}_{a} in $\{\mathrm{a}\}$ is related to \mathcal{G}_{b} by

$$
\mathcal{G}_{a}=\left[A d_{T_{b a}}\right]^{T} \mathcal{G}_{b}\left[A d_{T_{b a}}\right]
$$

This is a generalization of Steiner's theorem.

- Using the spatial inertia matrix \mathcal{G}_{a}, the equations of motion in the $\{\mathrm{b}\}$ frame can be expressed equivalently in the $\{a\}$ frame as

$$
\mathcal{F}_{a}=\mathcal{G}_{a} \dot{\mathcal{V}}_{a}-\left[a d_{\mathcal{V}_{a}}\right]^{T} \mathcal{G}_{a} \mathcal{V}_{a}
$$

The equations of motion is independent of the frame of representation.

