2 Dynamics of a Single Rigid Body

2.1 Classical Formulation

e Consider a rigid body consisting of a number of rigidly connected point masses, where point mass
i has mass m; and the total mass is m = >, m,.

o Let r; = (z;,v;,2;) be the fixed location of mass i in a body frame {b}, where the origin of this
frame is the unique point such that

Zmim =0

This point is known as the center of mass (CoM). The body frame {b} should be chosen at CoM.
e Assume that the body is moving with a body twist V, = (ws, v;), and let p;(¢) be the time-varying

position of m;, initially located at r;, in the inertial frame {b}. Then

Di = Uy +wp X p;

Pi = Up 4+ Wy X P+ wy X P = Uy + wp X p; +wp X (Vp + wy X p;)

= Up + [wp]ri + [wp]os + [wb]Qri

where p; is substituted with r;

e Taking as a given that f; = m;p;, for a point mass, the force and moment acting on m; are

fi = my(0p + [)ri + [wolve + [wp)*r:)

m; = [T’i]fz‘
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e The total force and moment acting on the body is expressed as the wrench F:

-2
fb ZZ fz

e To simplify the expressions for f, and m;, keep in mind that > . m;r; = 034, (and therefore ) . m;[r;] =

03x3) and, for a,b € ®3, [a] = —[a], [a]b = —[b]a, and [a][b] = ([b][a])T.

e Focusing on the linear dynamics,
= Z m; (0 + [Wo)ri + [we]vy + [wi) ;)
= Z:mZ Up + [wp]vp —i—ZmZ Wy|Ti —l—ZmZ [wp] [ws] T
= Z m; (0p + [wp|vp) + [w)] Z m;r;) + [wp)[ws) me)
i

= moy, + [wp|muy
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e Now focusing on the rotational dynamics,

mpy = Z[Ti]fi

_ Z my; [r] (0 + [o)7; + [wp]vp + [wp)*r:)

_ (ZZ m; [ri]) (6 + [ws]vs) + Z m; [ry] [@s]ri + Z [ [ws)r
— Z my [ 2y — Z m; [T’i];[wb]T[Ti]wb |

=— Zm e, — Zm on) [l

= ( Z mi[m]2> Wy + [wp)] ( Z mz‘[ﬁ‘?) W
= Tywp + [wb]Ibwb

where 7, € R is the body’s rotational inertia matrix expressed in terms of the CoM. It is known
as Euler’s equation for a rotating rigid body.

e The rotational kinetic energy is given by the quadratic

1
K= §waIbwb

e One difference is that 7, is constant whereas the mass matrix M (0) changes with the configura-
tion of the mechanism.
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e Writing out the individual entries of 7;, we get

0 —z v 0 —z v
Z m; 7“2 = Z m; | z; 0 —xz Z; 0 —ux
=y v 0| |-y xi O
Som(y; +27) = my — o, Mz Tow Loy Iy,
= | =Xy (el +27) =3 myiz | = Ly Ty Iy
— > M2 —>oimyizi Yo my(ry +y7) L. Iy, 1.

e The summations can be replaced by volume integrals over the body B, using the differential vol-

ume element dV' , with the point masses m; replaced by a mass density function p(z,y,2) = 3:

T = [[F + Pplay v
T, = /B(:c2 + 2 p(z,y, 2)dV
I.= /B(fc2 +y)p(x,y, 2)dV
Iy = —/B:pr(a:,y, z)dV
L,. = —/B::f;zp(x,y,z)dv

Iyz - —/yZp(iU,y,Z)dV
B
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rectangular parallelepiped: circular cylinder: ellipsoid:
volume = abc, volume = 7r2h, volume = 4mabe/3,

Tow = m(w? + h?%)/12, Toe =m(3r2 + h%) /12, I, = m(b? + c?)/5,
T,y = m(£? + h?)/12, T,y =m(3r? + h?)/12, I,, =m(a®+ c?)/5,
T, =m(£? +w?)/12 Z..,=mr2/2 Z.. =m(a® +b%)/5

Figure 8.5: The principal axes and the inertia about the principal axes for uniform-
density bodies of mass m. Note that the X and ¥ principal axes of the cylinder are not

unique.
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e If the body has uniform density, 7, is determined exclusively by the shape of the rigid body

e One principal axis maximizes the moment of inertia among all axes passing through the CoM,
and another minimizes the moment of inertia.

e If the principal axes of inertia are aligned with the axes of {b}, the off-diagonal terms of Z;, are
all zero, and the eigenvalues are the scalar moments of inertia 7,,, Z,, and Z.., about the z-, y-,
and z-axes, respectively. In this case, the equations of motion simplify to

my = Lywy + [wb]Ibwb

= | Zyywy + Loz
Z..w,+ (Z,,

22 )Wl

Topwr + (Lo — Ly )wyw,
-7
— Ly )Wy

where w, = (Wg, Wy, w:).
e Inertia matrix 7, can be expressed in a rotated frame {c} described by the rotation matrix Rj..

e Since the kinetic energy of the rotating body is independent of the chosen frame, we have

1
—w
2

1 1 1
TTw, = EwaIbwb = §(Rbcwc)TIb(Rbcwc) = §wg(R;{CIbRbc)wc

Cc

e In other words,
Ic — Rg;IbRbc

If the axes of {b} are not aligned with the principal axes of inertia then we can diagonalize the
inertia matrix by expressing it instead in the rotated frame {c}, where the columns of R,. corre-
spond to the eigenvalues of 7.
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e Sometimes it is convenient to represent the inertia matrix in a frame at a point not at the center
of mass of the body, for example at a joint.

Theorem 8.1. (Steiner’s theorem) The inertia matrix Z, about a frame aligned with {b}, but at a
point q¢ = (¢z,qy.q.) in {b}, is related to the inertia matrix I, calculated at the CoM by

I, =T, + m(q qlsx3 — qq")
where I is the 3 x 3 identity matrix and m is the mass of the body.

e Steiner’s theorem is a more general statement of the parallel-axis theorem, which states that the
scalar inertia Z; about an axis parallel to, but a distance d from, an axis through the CoM is
related to the scalar inertia 7., about the axis through the CoM by

T, = L., + md?

e In the case of motion confined to the z-y-plane, where w, = (0,0,w,) and the inertia of the body
about the z-axis through the CoM is given by the scalar 7.., the spatial rotational dynamics re-
duces to the planar rotational dynamics

m; = Izzwz

and the rotational kinetic energy is
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2.2 Twist-Wrench Formulation

e The linear dynamics f, = mo, + |[w,)mv, and the rotational dynamics m;, = Zyw, + [wy|Zyw, can be
written in the following combined form:
Iy  Ozx3| |we
O3x3 ml | |vp

my| | Ly Osx3| |wo N wp] 033

Jo Osxs ml | [0y O3x3  [wi]
where [ is the 3 x 3 identity matrix.

e With the benefit of hindsight, and also making use of the fact that [vJv = vxv =0 and [v] = —[v],

we can write Equation in the following equivalent form:

my| [ T, Ogs| [ N [ ()| [ T Oses| [ws
o (033 ml | [9p] |O3x3 [we]] |O3x3 ml | |vp
- S o4 ¢ 4T
| Do Osxs| |wo|  [lwn] Oz Ly Osxs| |wb
_03><3 m/ | _”l'}b_ _[Ub] [wb] i 03><3 m/ (%))
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e Written this way, each term can now be identified with six-dimensional spatial quantities as fol-
lows:

1. The vectors (wy, vy) and (my, f;) can be respectively identified with the body twist V}, and body

wrench F,
Wh T, = my
Up Jo

2. The spatial inertia matrix G, € 1<% is defined as

Vy =

Gy =

Ly 03><3]

O3xz ml

As an aside, the kinetic energy of the rigid body can be expressed in terms of the spatial
inertia matrix as

N 1 1 1
kinetic energy = §waIbwb + EmvbT vy = §V1,T GoVy

3. The spatial momentum P;, € R° is defined as

Py =GV

QAR



e The following matrix can be thought of as a generalization of the cross-product operation to six-
dimensional twists.
B [ 03><3]
[vp]  [wi]

First, recall that the cross product of two vectors wi,ws; € R can be calculated, using the skew-
symmetric matrix notation, as follows:

T

w1 X wa] = [[wi]ws] = [wi][we] — [wa]lwi]

Second, given two twists V) = (w1, v1) and V, = (ws, v2), we perform a calculation analogous to the

above:
el o] Tl w] el w] [l v
Vil = il = 015 0] lolxg 01 [01><3 0] lolxg 0]

i wa] — [wollwnr] [wi)ve — [waluy _ | W
01x3 0 01x3 0

which can be written more compactly in vector form as

WR N
v [v1]  [wr] | | o2

Generalization of the cross product to two twists V, and )V is called the Lie bracket of V; and V.
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Definition 8.1. Given two twists V, = (wy,v1) and Vo = (w2, v2), the Lie bracket of Vi = (wy,v1) and
Vo = (wo, v9), written either as [ady,]Vs or ady,(Vs), is defined as follows:

[M O3X3] [“2] — [ady, Vs = ady, (Vy) € R

[v1] wi] | |02

where

lady] = [M OSXSI € RO*6

] |w]
e Using the notation and definitions above, the dynamic equations for a single rigid body can now

be written as
[mb] _ wb] B [[wb] O3x3 1Ly 03x3] [wb]
To Up [vp)  [wp] O3xg ml | |vyp

Fy=GVy — adwj;b(Pb)
= GV, — [ady,] GV,

T

Ly O3x3
O3x3 mlf

e Note the analogy between above Equation and the moment equation for a rotating rigid body:

my = Lywy + [wb]Ibwb

= Ty, — [wp) Tows
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Definition 8.2. Given a twist V = (w,v) and a wrench F = (m, f), define the mapping

T

T T (W] O3x3 m —[w]m — [v]f
ady,(F) = |ady|” F = =
4= ot | ] |

2.3 Dynamics in Other Frames

e The derivation of the dynamic equations relies on the use of a CoM frame {b}.
e It is straightforward to express the dynamics in other frames. Let’s call one such frame {a}.

e Since the kinetic energy of the rigid body must be independent of the frame of representation,

1 1
§Vggava — §Vngbe

- %([AdTba]va)Tgb([AdTba]Va)

1
- §Vg([AdTba]Tgb [AdTba])Va
. : : R p
for the adjoint representation Adr using T = 0 .
3x1
R 0 X
Ady = 3x3
iR R
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e In other words, the spatial inertia matrix G, in {a} is related to G, by

ga = [AdTba]Tgb [AdTba]

This is a generalization of Steiner’s theorem.

e Using the spatial inertia matrix G,, the equations of motion in the {b} frame can be expressed
equivalently in the {a} frame as

Fo =GV, — lady TGV,

The equations of motion is independent of the frame of representation.
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