
2 Dynamics of a Single Rigid Body

2.1 Classical Formulation
• Consider a rigid body consisting of a number of rigidly connected point masses, where point mass
i has mass mi and the total mass is m =

P
imi.

• Let ri = (xi, yi, zi) be the fixed location of mass i in a body frame {b}, where the origin of this
frame is the unique point such that

X

i

miri = 0

This point is known as the center of mass (CoM). The body frame {b} should be chosen at CoM.

• Assume that the body is moving with a body twist Vb = (!b, vb), and let pi(t) be the time-varying
position of mi, initially located at ri, in the inertial frame {b}. Then

ṗi = vb + !b ⇥ pi

p̈i = v̇b + !̇b ⇥ pi + !b ⇥ ṗi = v̇b + !̇b ⇥ pi + !b ⇥ (vb + !b ⇥ pi)

= v̇b + [!̇b]ri + [!b]vb + [!b]
2ri

where pi is substituted with ri

• Taking as a given that fi = mip̈i for a point mass, the force and moment acting on mi are

fi = mi(v̇b + [!̇b]ri + [!b]vb + [!b]
2ri)

mi = [ri]fi
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• The total force and moment acting on the body is expressed as the wrench Fb:

Fb =

"
mb

fb

#
=

"P
imi

P
i fi

#

• To simplify the expressions for fb and mb, keep in mind that
P

imiri = 03⇥1 (and therefore
P

imi[ri] =
03⇥3) and, for a, b 2 <3, [a] = �[a]T , [a]b = �[b]a, and [a][b] = ([b][a])T .

• Focusing on the linear dynamics,

fb =
X

i

mi(v̇b + [!̇b]ri + [!b]vb + [!b]
2ri)

=
X

i

mi(v̇b + [!b]vb) +
X

i

mi[!̇b]ri +
X

i

mi[!b][!b]ri

=
X

i

mi(v̇b + [!b]vb) + [!̇b](
X

i

miri) + [!b][!b](
X

i

miri)

= mv̇b + [!b]mvb
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• Now focusing on the rotational dynamics,

mb =
X

i

[ri]fi

=
X

i

mi[ri](v̇b + [!̇b]ri + [!b]vb + [!b]
2ri)

= (
X

i

mi[ri])(v̇b + [!b]vb) +
X

i

mi[ri][!̇b]ri +
X

i

mi[ri][!b]
2ri

= �
X

i

mi[ri]
2!̇b �

X

i

mi[ri]
T [!b]

T [ri]!b

= �
X

i

mi[ri]
2!̇b �

X

i

mi[!b][ri]
2!b

=

 
�
X

i

mi[ri]
2

!
!̇b + [!b]

 
�
X

i

mi[ri]
2

!
!b

= Ib!̇b + [!b]Ib!b

where Ib 2 <3⇥3 is the body’s rotational inertia matrix expressed in terms of the CoM. It is known
as Euler’s equation for a rotating rigid body.

• The rotational kinetic energy is given by the quadratic

K =
1

2
!T
b Ib!b

• One difference is that Ib is constant whereas the mass matrix M(✓) changes with the configura-
tion of the mechanism.
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• Writing out the individual entries of Ib, we get

Ib = �
X

i

mi[ri]
2 = �

X

i

mi

2

664

0 �zi yi

zi 0 �xi

�yi xi 0

3

775

2

664

0 �zi yi

zi 0 �xi

�yi xi 0

3

775

=

2

664

P
imi(y2i + z2i ) �

P
imixiyi �

P
imixizi

�
P

imixiyi
P

imi(x2i + z2i ) �
P

imiyizi

�
P

imixizi �
P

imiyizi
P

imi(x2i + y2i )

3

775 =

2

664

Ixx Ixy Ixz
Ixy Iyy Iyz
Ixz Iyz Izz

3

775

• The summations can be replaced by volume integrals over the body B, using the differential vol-
ume element dV , with the point masses mi replaced by a mass density function ⇢(x, y, z) = m

V :

Ixx =
Z

B
(y2 + z2)⇢(x, y, z)dV

Iyy =
Z

B
(x2 + z2)⇢(x, y, z)dV

Izz =
Z

B
(x2 + y2)⇢(x, y, z)dV

Ixy = �
Z

B
xy⇢(x, y, z)dV

Ixz = �
Z

B
xz⇢(x, y, z)dV

Iyz = �
Z

B
yz⇢(x, y, z)dV
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• If the body has uniform density, Ib is determined exclusively by the shape of the rigid body

• One principal axis maximizes the moment of inertia among all axes passing through the CoM,
and another minimizes the moment of inertia.

• If the principal axes of inertia are aligned with the axes of {b}, the off-diagonal terms of Ib are
all zero, and the eigenvalues are the scalar moments of inertia Ixx, Iyy and Izz about the x-, y-,
and z-axes, respectively. In this case, the equations of motion simplify to

mb = Ib!̇b + [!b]Ib!b

=

2

664

Ixx!̇x + (Izz � Iyy)!y!z

Iyy!̇y + (Ixx � Izz)!x!z

Izz!̇z + (Iyy � Ixx)!x!y

3

775

where !b = (!x,!y,!z).

• Inertia matrix Ib can be expressed in a rotated frame {c} described by the rotation matrix Rbc.

• Since the kinetic energy of the rotating body is independent of the chosen frame, we have

1

2
!T
c Ic!c =

1

2
!T
b Ib!b =

1

2
(Rbc!c)

TIb(Rbc!c) =
1

2
!T
c (R

T
bcIbRbc)!c

• In other words,

Ic = RT
bcIbRbc

If the axes of {b} are not aligned with the principal axes of inertia then we can diagonalize the
inertia matrix by expressing it instead in the rotated frame {c}, where the columns of Rbc corre-
spond to the eigenvalues of Ib.
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• Sometimes it is convenient to represent the inertia matrix in a frame at a point not at the center
of mass of the body, for example at a joint.

Theorem 8.1. (Steiner’s theorem) The inertia matrix Iq about a frame aligned with {b}, but at a

point q = (qx, qy, qz) in {b}, is related to the inertia matrix Ib calculated at the CoM by

Iq = Ib +m(qT qI3⇥3 � qqT )

where I is the 3⇥ 3 identity matrix and m is the mass of the body.

• Steiner’s theorem is a more general statement of the parallel-axis theorem, which states that the
scalar inertia Id about an axis parallel to, but a distance d from, an axis through the CoM is
related to the scalar inertia Icm about the axis through the CoM by

Id = Icm +md2

• In the case of motion confined to the x-y-plane, where !b = (0, 0,!z) and the inertia of the body
about the z-axis through the CoM is given by the scalar Izz, the spatial rotational dynamics re-
duces to the planar rotational dynamics

mz = Izz!̇z

and the rotational kinetic energy is

K =
1

2
Izz!2

z
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2.2 Twist-Wrench Formulation
• The linear dynamics fb = mv̇b + [!b]mvb and the rotational dynamics mb = Ib!̇b + [!b]Ib!b can be

written in the following combined form:

"
mb

fb

#
=

"
Ib 03⇥3

03⇥3 mI

#"
!̇b

v̇b

#
+

"
[!b] 03⇥3

03⇥3 [!b]

#"
Ib 03⇥3

03⇥3 mI

#"
!b

vb

#

where I is the 3⇥ 3 identity matrix.

• With the benefit of hindsight, and also making use of the fact that [v]v = v⇥v = 0 and [v]T = �[v],
we can write Equation in the following equivalent form:

"
mb

fb

#
=

"
Ib 03⇥3

03⇥3 mI

#"
!̇b

v̇b

#
+

"
[!b] [vb]

03⇥3 [!b]

#"
Ib 03⇥3

03⇥3 mI

#"
!b

vb

#

=

"
Ib 03⇥3

03⇥3 mI

#"
!̇b

v̇b

#
�
"
[!b] 03⇥3

[vb] [!b]

#T "
Ib 03⇥3

03⇥3 mI

#"
!b

vb

#
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• Written this way, each term can now be identified with six-dimensional spatial quantities as fol-
lows:

1. The vectors (!b, vb) and (mb, fb) can be respectively identified with the body twist Vb and body
wrench Fb,

Vb =

"
!b

vb

#
Fb =

"
mb

fb

#

2. The spatial inertia matrix Gb 2 <6⇥6 is defined as

Gb =

"
Ib 03⇥3

03⇥3 mI

#

As an aside, the kinetic energy of the rigid body can be expressed in terms of the spatial
inertia matrix as

kinetic energy =
1

2
!T
b Ib!b +

1

2
mvTb vb =

1

2
VT
b GbVb

3. The spatial momentum Pb 2 <6 is defined as

Pb = GbVb
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• The following matrix can be thought of as a generalization of the cross-product operation to six-
dimensional twists.

�
"
[!b] 03⇥3

[vb] [!b]

#T

First, recall that the cross product of two vectors !1,!2 2 <3 can be calculated, using the skew-
symmetric matrix notation, as follows:

[!1 ⇥ !2] = [[!1]!2] = [!1][!2]� [!2][!1]

Second, given two twists V1 = (!1, v1) and V2 = (!2, v2), we perform a calculation analogous to the
above:

[V1][V2]� [V2][V1] =

"
[!1] v1

01⇥3 0

#"
[!2] v2

01⇥3 0

#
�
"
[!2] v2

01⇥3 0

#"
[!1] v1

01⇥3 0

#

=

"
[!1][!2]� [!2][!1] [!1]v2 � [!2]v1

01⇥3 0

#
=

"
[!0] v0

01⇥3 0

#

which can be written more compactly in vector form as

"
!0

v0

#
=

"
[!1] 03⇥3

[v1] [!1]

#"
!2

v2

#

Generalization of the cross product to two twists V1 and V2 is called the Lie bracket of V1 and V2.
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Definition 8.1. Given two twists V1 = (!1, v1) and V2 = (!2, v2), the Lie bracket of V1 = (!1, v1) and

V2 = (!2, v2), written either as [adV1]V2 or adV1(V2), is defined as follows:

"
[!1] 03⇥3

[v1] [!1]

#"
!2

v2

#
= [adV1]V2 = adV1(V2) 2 <6

where

[adV ] =

"
[!] 03⇥3

[v] [!]

#
2 <6⇥6

• Using the notation and definitions above, the dynamic equations for a single rigid body can now
be written as

"
mb

fb

#
=

"
Ib 03⇥3

03⇥3 mI

#"
!̇b

v̇b

#
�
"
[!b] 03⇥3

[vb] [!b]

#T "
Ib 03⇥3

03⇥3 mI

#"
!b

vb

#

Fb = GbV̇b � adTVb
(Pb)

= GbV̇b � [adVb]
TGbVb

• Note the analogy between above Equation and the moment equation for a rotating rigid body:

mb = Ib!̇b + [!b]Ib!b

= Ib!̇b � [!b]
TIb!b
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Definition 8.2. Given a twist V = (!, v) and a wrench F = (m, f), define the mapping

adTV(F) = [adV ]
TF =

"
[!] 03⇥3

[v] [!]

#T "
m

f

#
=

"
�[!]m� [v]f

�[!]f

#

2.3 Dynamics in Other Frames
• The derivation of the dynamic equations relies on the use of a CoM frame {b}.

• It is straightforward to express the dynamics in other frames. Let’s call one such frame {a}.

• Since the kinetic energy of the rigid body must be independent of the frame of representation,

1

2
VT
a GaVa =

1

2
VT
b GbVb

=
1

2
([AdTba]Va)

TGb([AdTba]Va)

=
1

2
VT
a ([AdTba]

TGb[AdTba])Va

for the adjoint representation AdT using T =

"
R p

03⇥1 1

#

AdT =

"
R 03⇥3

[p]R R

#
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• In other words, the spatial inertia matrix Ga in {a} is related to Gb by

Ga = [AdTba]
TGb[AdTba]

This is a generalization of Steiner’s theorem.

• Using the spatial inertia matrix Ga, the equations of motion in the {b} frame can be expressed
equivalently in the {a} frame as

Fa = GaV̇a � [adVa]
TGaVa

The equations of motion is independent of the frame of representation.
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