2 Differential Kinematics

- Unlike the case for open chains, in which the objective is to relate the input joint velocities to the twist of the end-effector frame, the analysis for closed chains is complicated by the fact that not all the joints are actuated.
- Only the actuated joints can be prescribed input velocities; the velocities of the remaining passive joints must then be determined from the kinematic constraint equations.
- These passive joint velocities are usually required in order to eventually determine the twist of the closed chain's end-effector frame.
- For open chains, the FK Jacobian is central to the velocity and static analysis.
- For closed chains, in addition to the FK Jacobian, the constraint Jacobian defined by the kinematic constraint equations - also plays a central role in the velocity and static analysis.
- Usually there are features of the mechanism that can be exploited to simplify and reduce the procedure for obtaining the two Jacobians.
- For the Stewart-Gough platform, the IK Jacobian can be obtained straightforwardly via static analysis.

(a) Stewart-Gough platform.

2.1 Stewart-Gough Platform

- In the previous slide, the IK for the Stewart-Gough platform can be solved analytically.
- Given the body-frame orientation $R \in S O(3)$ and position $p \in \Re^{3}$, the leg lengths $s \in \Re^{6}$ can be obtained analytically in the functional form

$$
s=g(R, p) \quad \leftarrow \quad s_{i}^{2}=d_{i}^{T} d_{i}=\left(p+R b_{i}-a_{i}\right)^{T}\left(p+R b_{i}-a_{i}\right) \text { for } i=1,2, \cdots, 6
$$

- In principle one could differentiate this equation and manipulate it into the form

$$
\dot{s}=G(R, p) \mathcal{V}_{s}
$$

where $\dot{s} \in \Re^{6}$ denotes the leg velocities, $\mathcal{V}_{s} \in \Re^{6}$ is the spatial twist, and $G(R, p) \in \Re^{6 \times 6}$ is the Jacobian of the IK. (It will require considerable algebraic manipulation)

- As a different approach, the conservation of power principle is used to determine the static relationship $\tau=J^{T} \mathcal{F}$ for open chains.
- In the absence of external forces, the only forces applied to the moving platform occur at the spherical joints in the SPS mechanism.
- Let f_{i} be the three-dimensional linear force applied by leg i

$$
f_{i}=\hat{n}_{i} \tau_{i}
$$

where $\hat{n}_{i} \in \Re^{3}$ is a unit vector indicating the direction of the applied force and $\tau_{i} \in \Re$ is the magnitude of the linear force.

- The moment m_{i} generated by f_{i} is

$$
m_{i}=r_{i} \times f_{i}=a_{i} \times f_{i}
$$

where $r_{i} \in \Re^{3}$ denotes the vector from the $\{\mathrm{s}\}$-frame origin to the point of application of the force (the location of spherical joint i in this case, so it can be replaced as a constant vector a_{i} at the fixed platform)

- Since neither the spherical joint at the moving platform nor the spherical joint at the fixed platform can resist any torques about them, the force f_{i} must be along the line of the leg.
- Combining f_{i} and m_{i} into the six-dimensional wrench $\mathcal{F}_{i}=\left(m_{i}, f_{i}\right)$, the resultant wrench \mathcal{F}_{s} on the moving platform is given by

$$
\begin{aligned}
\mathcal{F}_{s} & =\mathcal{F}_{1}+\mathcal{F}_{2}+\mathcal{F}_{3}+\mathcal{F}_{4}+\mathcal{F}_{5}+\mathcal{F}_{6} \\
& =\left[\begin{array}{c}
a_{1} \times f_{1} \\
f_{1}
\end{array}\right]+\left[\begin{array}{c}
a_{2} \times f_{2} \\
f_{2}
\end{array}\right]+\left[\begin{array}{c}
a_{3} \times f_{3} \\
f_{3}
\end{array}\right]+\left[\begin{array}{c}
a_{4} \times f_{4} \\
f_{4}
\end{array}\right]+\left[\begin{array}{c}
a_{5} \times f_{5} \\
f_{5}
\end{array}\right]+\left[\begin{array}{c}
a_{6} \times f_{6} \\
f_{6}
\end{array}\right] \\
& =\left[\begin{array}{c}
a_{1} \times \hat{n}_{1} \tau_{1} \\
\hat{n}_{1} \tau_{1}
\end{array}\right]+\left[\begin{array}{c}
a_{2} \times \hat{n}_{2} \tau_{2} \\
\hat{n}_{2} \tau_{2}
\end{array}\right]+\left[\begin{array}{c}
a_{3} \times \hat{n}_{3} \tau_{3} \\
\hat{n}_{3} \tau_{3}
\end{array}\right]+\left[\begin{array}{c}
a_{4} \times \hat{n}_{4} \tau_{4} \\
\hat{n}_{4} \tau_{4}
\end{array}\right]+\left[\begin{array}{c}
a_{5} \times \hat{n}_{5} \tau_{5} \\
\hat{n}_{5} \tau_{5}
\end{array}\right]+\left[\begin{array}{c}
a_{6} \times \hat{n}_{6} \tau_{6} \\
\hat{n}_{6} \tau_{6}
\end{array}\right] \\
& =\left[\begin{array}{c}
a_{1} \times \hat{n}_{1} \\
\hat{n}_{1}
\end{array}\right] \tau_{1}+\left[\begin{array}{c}
a_{2} \times \hat{n}_{2} \\
\hat{n}_{2}
\end{array}\right] \tau_{2}+\left[\begin{array}{c}
a_{3} \times \hat{n}_{3} \\
\hat{n}_{3}
\end{array}\right] \tau_{3}+\left[\begin{array}{c}
a_{4} \times \hat{n}_{4} 4 \\
\hat{n}_{4}
\end{array}\right] \tau_{+}\left[\begin{array}{c}
a_{5} \times \hat{n}_{5} \\
\hat{n}_{5}
\end{array}\right] \tau_{5}+\left[\begin{array}{c}
a_{6} \times \hat{n}_{6} \\
\hat{n}_{6}
\end{array}\right] \tau_{6} \\
& =\left[\begin{array}{c}
a_{1} \times \hat{n}_{1} \\
\hat{n}_{1} \\
\cdots
\end{array} a_{6} \times \hat{n}_{6}\right. \\
& \left.=\hat{n}_{6}\right]\left[\begin{array}{c}
\tau_{1} \\
\vdots \\
\tau_{6}
\end{array}\right] \\
& J_{s}^{-T} \tau
\end{aligned}
$$

where J_{s} is the spatial Jacobian of the FK, and its inverse is given by

$$
J_{s}^{-1}=\left[\begin{array}{ccc}
a_{1} \times \hat{n}_{1} & \cdots & a_{6} \times \hat{n}_{6} \\
\hat{n}_{1} & \cdots & \hat{n}_{6}
\end{array}\right]^{T}=\left[\begin{array}{ccc}
\hat{n}_{1} \times\left(-a_{1}\right) & \cdots & \hat{n}_{6} \times\left(-a_{6}\right) \\
\hat{n}_{1} & \cdots & \hat{n}_{6}
\end{array}\right]^{T}
$$

Figure 7.4: A general parallel mechanism.

2.2 General Parallel Mechanisms

- For the Stewart-Gough platform, the inverse Jacobian can be derived in terms of the screws associated with each straight-line leg.
- Consider more general parallel mechanisms where the static analysis is less straightforward.
- A procedure for determining the FK Jacobian that can be generalized to other types of parallel mechanisms.
- For simplicity, we will take $m=n=p=5$ in the general three-leg mechanism, so that the mechanism has dof $=n+m+p-12=3$.
- For the fixed and body frames indicated in the figure, we can write the FK for the three chains

$$
\begin{aligned}
T_{1}\left(\theta_{1}, \cdots, \theta_{5}\right) & =e^{\left[\mathcal{S}_{1}\right] \theta_{1}} \cdots e^{\left[\mathcal{S}_{5}\right] \theta_{5}} M_{1} \\
T_{2}\left(\phi_{1}, \cdots, \phi_{5}\right) & =e^{\left[\mathcal{P}_{1}\right] \phi_{1}} \cdots e^{\left[\mathcal{P}_{\mathcal{F}}\right] \phi_{5}} M_{2} \\
T_{3}\left(\psi_{1}, \cdots, \psi_{5}\right) & =e^{\left[\mathcal{Q}_{1}\right] \psi_{1}} \cdots e^{\left[\mathcal{Q}_{5}\right] \psi_{5}} M_{3}
\end{aligned}
$$

- The kinematic loop constraints can be expressed as

$$
T_{1}(\theta)=T_{2}(\phi)
$$

$$
T_{2}(\phi)=T_{3}(\psi)
$$

- Since these constraints must be satisfied at all times, we can express their time derivatives in terms of their spatial twists, using

$$
\dot{T}_{1} T_{1}^{-1}(\theta)=\dot{T}_{2} T_{2}^{-1}(\phi) \quad \dot{T}_{2} T_{2}^{-1}(\phi)=\dot{T}_{3} T_{3}^{-1}(\psi)
$$

- Since $\dot{T}_{i} T_{i}^{-1}=\left[\mathcal{V}_{i}\right]$, where \mathcal{V}_{i} is the spatial twist of chain i 's end-effector frame, the above identities can also be expressed in terms of the FK Jacobian for each chain:

$$
J_{1}(\theta) \dot{\theta}=J_{2}(\phi) \dot{\phi} \quad J_{2}(\phi) \dot{\phi}=J_{3}(\psi) \dot{\psi}
$$

which can be rearranged as

$$
\left[\begin{array}{clc}
J_{1}(\theta) & -J_{2}(\phi) & 0 \\
0 & -J_{2}(\phi) & J_{3}(\psi)
\end{array}\right]\left[\begin{array}{c}
\dot{\theta} \\
\dot{\phi} \\
\dot{\psi}
\end{array}\right]=0
$$

- Now we rearrange the 15 joints into those that are actuated and those that are passive. Assume without loss of generality that the three actuated joints are $\left(\dot{\theta}_{1}, \dot{\phi}_{1}, \dot{\psi}_{1}\right)$. Define the vector of the actuated joints $q_{a} \in \Re^{3}$ and the vector of the passive joints $q_{p} \in \Re^{12}$ as

$$
q_{a}=\left[\begin{array}{c}
\dot{\theta}_{1} \\
\dot{\phi}_{1} \\
\dot{\psi}_{1}
\end{array}\right] \quad q_{p}=\left[\begin{array}{c}
\dot{\theta}_{2} \\
\vdots \\
\dot{\psi}_{5}
\end{array}\right] \in \Re^{12}
$$

$$
q=\left[\begin{array}{l}
q_{a} \\
q_{p}
\end{array}\right] \in \Re^{15}
$$

- Above equation can now be rearranged into the form

$$
\left[\begin{array}{ll}
H_{a}(q) & H_{p}(q)
\end{array}\right]\left[\begin{array}{c}
\dot{q}_{a} \\
\dot{q}_{p}
\end{array}\right]=0 \quad \rightarrow \quad H_{a} \dot{q}_{a}+H_{p} \dot{q}_{p}=0 \quad \rightarrow \quad \dot{q}_{p}=-H_{p}^{-1} H_{a} \dot{q}_{a}
$$

- Assuming that H_{p} is invertible, once the velocities of the actuated joints are given, then the velocities of the remaining passive joints can be obtained uniquely
- It still remains to derive the FK Jacobian with respect to the actuated joints, i.e., to find $J_{a}(q) \in$ $\Re^{6 \times 3}$ satisfying $\mathcal{V}_{s}=J_{a}(q) \dot{q}_{a}$, where \mathcal{V}_{s} is the spatial twist of the end-effector frame.
- For this purpose we can use the FK for any of the three open chains: for example, in terms of chain $1, J_{1}(\theta) \dot{\theta}=\mathcal{V}_{s}$, and from $\dot{q}_{p}=-H_{p}^{-1} H_{a} \dot{q}_{a}$ we can write

$$
\begin{array}{lll}
\dot{\theta}_{2}=g_{2}^{T} \dot{q}_{a} & \dot{\theta}_{3}=g_{3}^{T} \dot{q}_{a} & \dot{\theta}_{4}=g_{4}^{T} \dot{q}_{a} \\
\dot{\theta}_{5}=g_{5}^{T} \dot{q}_{a}
\end{array}
$$

where each $g_{i}(q) \in \Re^{3}$, for $i=2, \cdots, 5$, can be obtained from $\dot{q}_{p}=-H_{p}^{-1} H_{a} \dot{q}_{a}$

- Defining the row vector $e_{1}^{T}=[100]$, the differential FK for chain 1 can now be written

$$
\mathcal{V}_{s}=J_{1}(\theta)\left[\begin{array}{c}
e_{1}^{T} \\
g_{2}^{T} \\
g_{3}^{T} \\
g_{4}^{T} \\
g_{5}^{T}
\end{array}\right]\left[\begin{array}{c}
\dot{\theta}_{1} \\
\dot{\phi}_{1} \\
\dot{\psi}_{1}
\end{array}\right]
$$

- Since we are seeking $J_{a}(q)$ in $\mathcal{V}_{s}=J_{a}(q) \dot{q}_{a}$, and since $\dot{q}_{a}=\left(\dot{\theta}_{1}, \dot{\phi}_{1}, \dot{\psi}_{1}\right)$, from the above it now follows that

$$
J_{a}(q)=J_{1}(\theta)\left[\begin{array}{c}
e_{1}^{T} \\
g_{2}^{T} \\
g_{3}^{T} \\
g_{4}^{T} \\
g_{5}^{T}
\end{array}\right]
$$

this equation could also have been derived using either chain 2 or chain 3 .

- Given values for the actuated joints q_{a}, we still need to solve for the passive joints q_{p} from the loop-constraint equations. $\dot{q}_{p}=-H_{p}^{-1} H_{a} \dot{q}_{a}$
- The second point to note is that $H_{p}(q)$ may become singular, in which case \dot{q}_{p} cannot be obtained from \dot{q}_{a}.
- Configurations in which $H_{p}(q)$ becomes singular correspond to actuator singularities.

