
2 Differential Kinematics
• Unlike the case for open chains, in which the objective is to relate the input joint velocities to

the twist of the end-effector frame, the analysis for closed chains is complicated by the fact that
not all the joints are actuated.

• Only the actuated joints can be prescribed input velocities; the velocities of the remaining passive
joints must then be determined from the kinematic constraint equations.

• These passive joint velocities are usually required in order to eventually determine the twist of
the closed chain’s end-effector frame.

• For open chains, the FK Jacobian is central to the velocity and static analysis.

• For closed chains, in addition to the FK Jacobian, the constraint Jacobian defined by the kine-
matic constraint equations - also plays a central role in the velocity and static analysis.

• Usually there are features of the mechanism that can be exploited to simplify and reduce the
procedure for obtaining the two Jacobians.

• For the Stewart-Gough platform, the IK Jacobian can be obtained straightforwardly via static
analysis.
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2.1 Stewart-Gough Platform
• In the previous slide, the IK for the Stewart-Gough platform can be solved analytically.

• Given the body-frame orientation R 2 SO(3) and position p 2 <3, the leg lengths s 2 <6 can be
obtained analytically in the functional form

s = g(R, p)  s2i = dTi di = (p+Rbi � ai)
T (p+Rbi � ai) for i = 1, 2, · · · , 6
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• In principle one could differentiate this equation and manipulate it into the form

ṡ = G(R, p)Vs

where ṡ 2 <6 denotes the leg velocities, Vs 2 <6 is the spatial twist, and G(R, p) 2 <6⇥6 is the
Jacobian of the IK. (It will require considerable algebraic manipulation)

• As a different approach, the conservation of power principle is used to determine the static rela-
tionship ⌧ = JTF for open chains.

• In the absence of external forces, the only forces applied to the moving platform occur at the
spherical joints in the SPS mechanism.

• Let fi be the three-dimensional linear force applied by leg i

fi = n̂i⌧i

where n̂i 2 <3 is a unit vector indicating the direction of the applied force and ⌧i 2 < is the
magnitude of the linear force.

• The moment mi generated by fi is

mi = ri ⇥ fi = ai ⇥ fi

where ri 2 <3 denotes the vector from the {s}-frame origin to the point of application of the force
(the location of spherical joint i in this case, so it can be replaced as a constant vector ai at the
fixed platform)

• Since neither the spherical joint at the moving platform nor the spherical joint at the fixed plat-
form can resist any torques about them, the force fi must be along the line of the leg.
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• Combining fi and mi into the six-dimensional wrench Fi = (mi, fi), the resultant wrench Fs on
the moving platform is given by

Fs = F1 + F2 + F3 + F4 + F5 + F6

=

"
a1 ⇥ f1

f1

#
+

"
a2 ⇥ f2

f2

#
+

"
a3 ⇥ f3

f3

#
+

"
a4 ⇥ f4

f4

#
+

"
a5 ⇥ f5

f5

#
+

"
a6 ⇥ f6

f6

#

=

"
a1 ⇥ n̂1⌧1

n̂1⌧1

#
+

"
a2 ⇥ n̂2⌧2

n̂2⌧2

#
+

"
a3 ⇥ n̂3⌧3

n̂3⌧3

#
+

"
a4 ⇥ n̂4⌧4

n̂4⌧4

#
+

"
a5 ⇥ n̂5⌧5

n̂5⌧5

#
+

"
a6 ⇥ n̂6⌧6

n̂6⌧6

#

=

"
a1 ⇥ n̂1

n̂1

#
⌧1 +

"
a2 ⇥ n̂2

n̂2

#
⌧2 +

"
a3 ⇥ n̂3

n̂3

#
⌧3 +

"
a4 ⇥ n̂44

n̂4

#
⌧+

"
a5 ⇥ n̂5

n̂5

#
⌧5 +

"
a6 ⇥ n̂6

n̂6

#
⌧6

=

"
a1 ⇥ n̂1 · · · a6 ⇥ n̂6

n̂1 · · · n̂6

#
2

664

⌧1
...
⌧6

3

775

= J�Ts ⌧

where Js is the spatial Jacobian of the FK, and its inverse is given by

J�1s =

"
a1 ⇥ n̂1 · · · a6 ⇥ n̂6

n̂1 · · · n̂6

#T

=

"
n̂1 ⇥ (�a1) · · · n̂6 ⇥ (�a6)

n̂1 · · · n̂6

#T
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2.2 General Parallel Mechanisms
• For the Stewart-Gough platform, the inverse Jacobian can be derived in terms of the screws as-

sociated with each straight-line leg.

• Consider more general parallel mechanisms where the static analysis is less straightforward.

• A procedure for determining the FK Jacobian that can be generalized to other types of parallel
mechanisms.

• For simplicity, we will take m = n = p = 5 in the general three-leg mechanism, so that the
mechanism has dof = n+m+ p� 12 = 3.
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• For the fixed and body frames indicated in the figure, we can write the FK for the three chains

T1(✓1, · · · , ✓5) = e[S1]✓1 · · · e[S5]✓5M1

T2(�1, · · · ,�5) = e[P1]�1 · · · e[P5]�5M2

T3( 1, · · · , 5) = e[Q1] 1 · · · e[Q5] 5M3

• The kinematic loop constraints can be expressed as

T1(✓) = T2(�) T2(�) = T3( )

• Since these constraints must be satisfied at all times, we can express their time derivatives in
terms of their spatial twists, using

Ṫ1T
�1
1 (✓) = Ṫ2T

�1
2 (�) Ṫ2T

�1
2 (�) = Ṫ3T

�1
3 ( )

• Since ṪiT
�1
i = [Vi], where Vi is the spatial twist of chain i’s end-effector frame, the above identities

can also be expressed in terms of the FK Jacobian for each chain:

J1(✓)✓̇ = J2(�)�̇ J2(�)�̇ = J3( ) ̇

which can be rearranged as

"
J1(✓) �J2(�) 0

0 �J2(�) J3( )

#
2

664

✓̇

�̇

 ̇

3

775 = 0
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• Now we rearrange the 15 joints into those that are actuated and those that are passive. Assume
without loss of generality that the three actuated joints are (✓̇1, �̇1,  ̇1). Define the vector of the
actuated joints qa 2 <3 and the vector of the passive joints qp 2 <12 as

qa =

2

664

✓̇1

�̇1

 ̇1

3

775 qp =

2

664

✓̇2
...
 ̇5

3

775 2 <
12 q =

"
qa

qp

#
2 <15

• Above equation can now be rearranged into the form

h
Ha(q) Hp(q)

i "q̇a
q̇p

#
= 0 ! Haq̇a +Hpq̇p = 0 ! q̇p = �H�1p Haq̇a

• Assuming that Hp is invertible, once the velocities of the actuated joints are given, then the ve-
locities of the remaining passive joints can be obtained uniquely

• It still remains to derive the FK Jacobian with respect to the actuated joints, i.e., to find Ja(q) 2
<6⇥3 satisfying Vs = Ja(q)q̇a, where Vs is the spatial twist of the end-effector frame.

• For this purpose we can use the FK for any of the three open chains: for example, in terms of
chain 1, J1(✓)✓̇ = Vs, and from q̇p = �H�1p Haq̇a we can write

✓̇2 = gT2 q̇a ✓̇3 = gT3 q̇a ✓̇4 = gT4 q̇a ✓̇5 = gT5 q̇a

where each gi(q) 2 <3, for i = 2, · · · , 5, can be obtained from q̇p = �H�1p Haq̇a
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• Defining the row vector eT1 = [100], the differential FK for chain 1 can now be written

Vs = J1(✓)

2

66666664

eT1

gT2

gT3

gT4

gT5

3

77777775

2

664

✓̇1

�̇1

 ̇1

3

775

• Since we are seeking Ja(q) in Vs = Ja(q)q̇a, and since q̇a = (✓̇1, �̇1,  ̇1), from the above it now follows
that

Ja(q) = J1(✓)

2

66666664

eT1

gT2

gT3

gT4

gT5

3

77777775

this equation could also have been derived using either chain 2 or chain 3.

• Given values for the actuated joints qa, we still need to solve for the passive joints qp from the
loop-constraint equations. q̇p = �H�1p Haq̇a

• The second point to note is that Hp(q) may become singular, in which case q̇p cannot be obtained
from q̇a.

• Configurations in which Hp(q) becomes singular correspond to actuator singularities.
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