2 Differential Kinematics

Unlike the case for open chains, in which the objective is to relate the input joint velocities to
the twist of the end-effector frame, the analysis for closed chains is complicated by the fact that
not all the joints are actuated.

Only the actuated joints can be prescribed input velocities; the velocities of the remaining passive
joints must then be determined from the kinematic constraint equations.

These passive joint velocities are usually required in order to eventually determine the twist of
the closed chain’s end-effector frame.

For open chains, the FK Jacobian is central to the velocity and static analysis.

For closed chains, in addition to the FK Jacobian, the constraint Jacobian defined by the kine-
matic constraint equations - also plays a central role in the velocity and static analysis.

Usually there are features of the mechanism that can be exploited to simplify and reduce the
procedure for obtaining the two Jacobians.

For the Stewart-Gough platform, the IK Jacobian can be obtained straightforwardly via static
analysis.
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(a) Stewart—Gough platform.

2.1 Stewart-Gough Platform
e In the previous slide, the IK for the Stewart-Gough platform can be solved analytically.

e Given the body-frame orientation R € SO(3) and position p € i3, the leg lengths s € R° can be
obtained analytically in the functional form

s=g(R,p) <+ szzddei:(p—l—Rbi—ai)T(p—l—Rbi—ai) fori=1,2,---,6

2
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In principle one could differentiate this equation and manipulate it into the form
$=G(R,p)Vs
where s € R° denotes the leg velocities, V, € R% is the spatial twist, and G(R,p) € R%*0 is the

Jacobian of the IK. (It will require considerable algebraic manipulation)

As a different approach, the conservation of power principle is used to determine the static rela-
tionship 7 = J'F for open chains.

In the absence of external forces, the only forces applied to the moving platform occur at the
spherical joints in the SPS mechanism.

Let f; be the three-dimensional linear force applied by leg i

fi =T

where 7; € 7 is a unit vector indicating the direction of the applied force and 7; € R is the
magnitude of the linear force.

The moment m,; generated by f; is
m; =1 X fi =a; X [f;

where 7; € R denotes the vector from the {s}-frame origin to the point of application of the force
(the location of spherical joint i in this case, so it can be replaced as a constant vector a; at the
fixed platform)

Since neither the spherical joint at the moving platform nor the spherical joint at the fixed plat-
form can resist any torques about them, the force f; must be along the line of the leg.
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e Combining f; and m,; into the six-dimensional wrench F;, = (m,, f;), the resultant wrench F; on
the moving platform is given by

Fs

where J,
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is the spatial Jacobian of the FK, and its inverse is given by
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Figure 7.4: A general parallel mechanism.

2.2 General Parallel Mechanisms

e For the Stewart-Gough platform, the inverse Jacobian can be derived in terms of the screws as-
sociated with each straight-line leg.

e Consider more general parallel mechanisms where the static analysis is less straightforward.

e A procedure for determining the FK Jacobian that can be generalized to other types of parallel
mechanisms.

e For simplicity, we will take m = n = p = 5 in the general three-leg mechanism, so that the
mechanism has dof =n+m+p—12 = 3.
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For the fixed and body frames indicated in the figure, we can write the FK for the three chains

Ti(0y,---,05) = elSilon
Ty(p1,- -+, 5) = elPilen
Ty(thy, -+ ap5) = el@l0n .

The kinematic loop constraints can be expressed as

T1(0) = T5(¢)

. 6[85]05 ]\41
.. e[P5}¢5M2

T3(¢) = T3(v)

Since these constraints must be satisfied at all times, we can express their time derivatives in

terms of their spatial twists, using

T1T1_1(9) - T2T2_1(¢>

DTy () = TsTy ()

Since TZTZ-_1 = [V;], where V), is the spatial twist of chain i’s end-effector frame, the above identities
can also be expressed in terms of the FK Jacobian for each chain:

Ji(0)6 = Jo(¢)9

which can be rearranged as

Jo(0)p = J3(¥)¢)



e Now we rearrange the 15 joints into those that are actuated and those that are passive. Assume
without loss of generality that the three actuated joints are (61, ¢1,11). Define the vector of the
actuated joints ¢, € R* and the vector of the passive joints ¢, € R'? as

0, 0

G = |1 Gp=|:]|en? q= [q“] c R
. . q
Wy s 3

e Above equation can now be rearranged into the form

Ga

. ] =0 — HuG, + Hygp, =0 — qp = —Hngaqa
dp

H,(q) Hp(Q)} [

e Assuming that H, is invertible, once the velocities of the actuated joints are given, then the ve-
locities of the remaining passive joints can be obtained uniquely

e It still remains to derive the FK Jacobian with respect to the actuated joints, i.e., to find J,(q) €
RO3 satisfying V, = J,(q)d., where V, is the spatial twist of the end-effector frame.

e For this purpose we can use the FK for any of the three open chains: for example, in terms of
chain 1, Ji(0)0 = V,, and from ¢, = —H,'H,j, we can write

QQZQgQa 93:g§TQa 94:94{4@ 95:g5TQa

where each g;(q) € ®*, for i = 2,--- |5, can be obtained from ¢, = —H, ' H,q,
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e Defining the row vector ¢! = [100], the differential FK for chain 1 can now be written

T
€1

95
Vs = J1(9) gST

gi

95

1
¢

e Since we are seeking J,(¢) in V, = J,(¢)d., and since ¢, = (61, é1,), from the above it now follows

that

el

g5
g5

g

95 |

this equation could also have been derived using either chain 2 or chain 3.

e Given values for the actuated joints ¢,, we still need to solve for the passive joints ¢, from the

loop-constraint equations. ¢, = —H; 'H,4a

e The second point to note is that H,(¢q) may become singular, in which case ¢, cannot be obtained

from ¢,.

e Configurations in which H,(¢) becomes singular correspond to actuator singularities.
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