
3 Configuration Space: Topology and Representation

3.1 Configuration Space Topology
Robot’s C-space - its dimension, its number of dof, and its shape (topology)

• Two spaces are topologically equivalent if one can be continuously deformed into the other w/o
cutting or gluing

– (sphere and football) A sphere can be deformed into a football simply by stretching w/o cut-
ting or gluing, so these two spaces are topologically equivalent.

– (sphere and plane) We cannot turn a sphere into a plane w/o cutting it, so a sphere and a
plane are not topologically equivalent.

• Topologically distinct one-dimensional spaces includes the circle, the line, and a closed interval
of the line.

– The circle is written mathematically as S or S1, indicating a one-dimensional sphere
– The line as E or E1, indicating a one-dimensional Euclidean (or flat) space. → since a point

in E1 is usually represented by a real number, it is often written as R or R1 instead.
– The closed-interval of the line, which contains its endpoints, can be written as [a, b] ⊂ R1.

• In higher dimensions, Rn is the n-dimensional Euclidean space and Sn is the n-dimensional sur-
face of a sphere in (n+ 1)-dimensional space.

• Note that the topology of a sphere is a fundamental property of the space itself and is independent
of how we choose coordinates to represent points in the space .
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• An open-interval of the line (a, b) does not include the endpoints a and b and is topologically equiv-
alent to a line, since a line does not contain endpoints.

• A closed-interval of the line [a, b] is not topologically equivalent to a line, since a line does not
contain endpoints.

• Some C-space can be expressed as the Cartesian product of two or more spaces of lower dimen-
sion.

• In other words, points in such a C-space can be represented as the union of the representations
of points in the lower-dimensional spaces.
→ For example, the C-space of a rigid body in the plane can be written as R2 × S1, since the
configuration can be represented as the concatenation of the coordinates (x, y) representing R2

and an angle θ representing S1.
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1. C-space of a point on a plane can be written as

R2.

2. C-space of a spherical pendulum can be written

as S2.

3. C-space of a 2R robot arm can be written S1×S1 =

T 2, where T n is the n-dimensional surface of a

torus in an (n+ 1)-dimensional space.

Note that a sphere S2 is not topologically equiva-

lent to a torus T 2.

4. C-space of a PR joint can be written R1 × S1.

• The C-space of a planar rigid body (e.g., the chassis of a mobile robot) with a 2R robot arm can
be written as R2 × S1 × T 2 = R2 × T 3.

• The C-space of a rigid body in three-dimensional space can be described by a point in R3, plus a
point on a two-dimensional sphere S2, plus a point on a one-dimensional circle S1, giving a total
C-space of R3 × S2 × S1.
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3.2 Configuration Space Representation
• To perform computations, we must have a numerical representation of the space, consisting of a

set of real numbers. - e.g., vector (an ordered list of variables)

• It is important to keep in mind that the representation of a space involves a choice, and therefore
it is not as fundamental as the topology of the space, which is independent of the representation.

• Explicit parameterization of the space : consider the surface on the sphere with latitude-longitude
coordinates

– it is unsatisfactory if you are walking near the North Pole (latitude = 90◦) or South Pole (lat-
itude = −90◦), where taking a very small step can result in a large change in the coordinates.

– The North and South Poles are singularities of the representation, and the existence of sin-
gularities is a result of the fact that a sphere does not have the same topology as a plane.

• To resolve singularities

– use more than one coordinate chart on the space : As the configuration approaches a singu-
larity in one chart, you simply switch to another chart where the North and South Poles are
far from singularities. e.g., cylindrical coordinates

– use an implicit representation of the space : We can use (x, y, z) in three-dimensional space
with one constraint x2+ y2+ z2 = r2, since the a point moving smoothly around the sphere is
represented by a smoothly changing (x, y, z), even at North and South Poles.

• Rotation matrix uses nine numbers, subject to six constraints, to represent the three orientation
freedoms of a rigid body in space. - it is singularity-free and able to apply linear algebra.
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4 Configuration and Velocity Constraints

• For robots containing one or more closed loops, usually an implicit representation is more easily
obtained than an explicit parametrization.

• Consider planar four-bar linkage

x-coordinate g1 : L1 cos θ1 + L2 cos(θ1 + θ2) + L3 cos(θ1 + θ2 + θ3) + L4 cos(θ1 + θ2 + θ3 + θ4) = 0

y-coordinate g2 : L1 sin θ1 + L2 sin(θ1 + θ2) + L3 sin(θ1 + θ2 + θ3) + L4 sin(θ1 + θ2 + θ3 + θ4) = 0

orientation g3 : θ1 + θ2 + θ3 + θ4 − 2π = 0

• It has one dof because of four variables θ1, θ2, θ3, θ4 and above three constraints (loop-closure equa-
tions)

• The set of all solutions forms a one-dimensional curve in the four-dimensional joint space and
constitutes the C-space.
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• The C-space can be implicitly represented by the column vector θ = [θ1, · · · , θn]T ∈ Rn and the
loop-closure equations of the form (constraints)

g(θ) =


g1(θ1, · · · , θn)

...

gk(θ1, · · · , θn)

 ∈ Rk

• Such constraints are known as holonomic constraints that reduce the dimension of the C-space.

• The C-space can be viewed as a surface of dimension n − k (assuming that all constraints are
independent) embedded in Rn.

• Let us take time derivative of the constraints as follow:
∂g1
∂θ1
θ̇1 + · · ·+ ∂g1

∂θ1
θ̇n

...
∂gk
∂θ1
θ̇1 + · · ·+ ∂gk

∂θ1
θ̇n

 =


∂g1
∂θ1

· · · ∂g1
∂θn...

∂gk
∂θ1

· · · ∂gk
∂θn



θ̇1
...

θ̇n

 =


0
...

0


• Above can be rewritten as the compact form:

∂g

∂θ
(θ)θ̇ = 0 → A(θ)θ̇ = 0

• Velocity constraints of this form are called Pfaffian constraints. Inversely,

– holonomic if Pfaffian constraints can be integrated to give equivalent configuration constraints
– nonholonomic if Pfaffian constraints cannot be integrated
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Consider an upright coin of radius r rolling on a plane.

• The configuration of the coin is given by the contact point (x, y) on the plane, the steering angle
ϕ, and the angle of rotation θ.

• The C-space of the coin is therefore R2 × T 2, where T 2 is the two-dimensional torus.

• This C-space is four dimensional.

• Assuming that coin rolls w/o slipping, the coin must always rolls in the direction indicated by
(cosϕ, sinϕ) with forward speed rθ̇: [

ẋ

ẏ

]
= rθ̇

[
cosϕ

sinϕ

]

• Collecting the four C-space coordinates into a single vector q = [q1, q2, q3, q4]
T = [x, y, ϕ, θ]T ∈ R2×T 2,

the above no-slip rolling constraint can then be expressed in the form of Pfaffian constraints:[
1 0 0 −r cos q3
0 1 0 −r sin q3

]
q̇ = 0 → A(q)q̇ = 0
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• Let us check whether the Pfaffian contstraints are integrable or not.

∂g1
∂q1

= 1 → g1(q) = q1 + h1(q2, q3, q4)

∂g1
∂q2

=
∂h1
∂q2

= 0 → h1(q2, q3, q4) = l1(q3, q4) → g1(q) = q1 + l1(q3, q4)

∂g1
∂q3

=
∂l1
∂q3

= 0 → l1(q3, q4) = k(q4) → g1(q) = q1 + k1(q4)

∂g1
∂q4

=
∂k1
∂q4

= −r cos q3 → k1(q4) = −rq4 cos q3 k1 is a function of q3

• No such g1 exists and g2 does not exist. → it is non-integrable.→ nonholonomic

• Such Pfaffian constraints reduce the dimension of the feasible velocities of the system but do not
reduce the dimension of the reachable C-space.

• Examples of nonholonomic constraints : conservation of momentum, rolling w/o slipping.
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5 Task Space and Workspace
The task space is a space in which the robot’s task can be naturally expressed.

• If the robot’s task is to plot with a pen on a piece of paper, the task space would be R2.

• The decision of how to define the task space is driven by the task, independently of the robot.

The workspace is a specification of the configurations that the end-effector of the robot can reach.

• Definition of the workspace is primarily driven by the robot’s structure, independently of the task.

1. C-Space of planar 2R : T 2, its workspace : R2 (planar

disk)

2. C-Space of planar 3R : T 3, its workspace : R2 (planar

disk)

3. C-Space of spherical 2R : S2, its workspace : S2 (sur-

face of the sphere)

4. C-Space of wrist mechanism : S2×S1, its workspace :

S2 × S1 (all the orientation)
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Example 2.7. (SCARA robot)

• it has an RRRP open chain that is widely used for tabletop pick-and-place tasks.

• end-effector configuration is completely described by (x, y, z, ϕ)

• its task space would typically be defined as R3 × S1

• its workspace would typically be defined as the reachable points in R3 × S1

Example 2.8. (standard 6R industrial manipulator)

• assume that it is adapted to spray-painting applications

• end-effector configuration is completely described by (x, y, z, ϕ, θ, ψ)

• its task space would typically be defined as R3 × S2 because the rotation about the nozzle axis do
not matter

• its workspace would typically be defined as the reachable points in R3 × S2
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6 Homework : Chapter 2
• Please solve and submit Exercise 2.5, 2.6, 2.7, 2.11, 2.12, 2.14, 2.19, 2.25, 2.26, 2.31, 2.32 till

March 26 (upload it as a pdf form or email me)

• If you let me know what the numbers you cannot solve until March 23, I will include the solving
process in the next lecture.
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