3 Configuration Space: Topology and Representation

3.1 Configuration Space Topology

Robot’s C-space - its dimension, its number of dof, and its shape (topology)

e Two spaces are topologically equivalent if one can be continuously deformed into the other w/o
cutting or gluing

— (sphere and football) A sphere can be deformed into a football simply by stretching w/o cut-
ting or gluing, so these two spaces are topologically equivalent.

— (sphere and plane) We cannot turn a sphere into a plane w/o cutting it, so a sphere and a
plane are not topologically equivalent.

e Topologically distinct one-dimensional spaces includes the circle, the line, and a closed interval
of the line.
— The circle is written mathematically as S or S!, indicating a one-dimensional sphere

— The line as E or E', indicating a one-dimensional Euclidean (or flat) space. — since a point
in E! is usually represented by a real number, it is often written as R or R! instead.

— The closed-interval of the line, which contains its endpoints, can be written as [a,b] C R'.

e In higher dimensions, R" is the n-dimensional Euclidean space and S” is the n-dimensional sur-
face of a sphere in (n + 1)-dimensional space.

e Note that the topology of a sphere is a fundamental property of the space itself and is independent
of how we choose coordinates to represent points in the space .
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e An open-interval of the line (a,b) does not include the endpoints ¢ and b and is topologically equiv-
alent to a line, since a line does not contain endpoints.

e A closed-interval of the line [q,b] is not topologically equivalent to a line, since a line does not
contain endpoints.
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Figure 2.9: An open interval of the real line, denoted (a,b), can be deformed to an
open semicircle. This open semicircle can then be deformed to the real line by the
mapping illustrated: beginning from a point at the center of the semicircle, draw a ray
that intersects the semicircle and then a line above the semicircle. These rays show
that every point of the semicircle can be stretched to exactly one point on the line,
and vice versa. Thus an open interval can be continuously deformed to a line, so an
open interval and a line are topologically equivalent.

e Some C-space can be expressed as the Cartesian product of two or more spaces of lower dimen-
sion.

e In other words, points in such a C-space can be represented as the union of the representations
of points in the lower-dimensional spaces.

— For example, the C-space of a rigid body in the plane can be written as R? x S!, since the
configuration can be represented as the concatenation of the coordinates (z,y) representing R>
and an angle  representing S'.
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1. C-space of a point on a plane can be written as
R2.
2. C-space of a spherical pendulum can be written

as S2.

3. C-space of a 2R robot arm can be written S'xS! =
T?, where T" is the n-dimensional surface of a

torus in an (n + 1)-dimensional space.

Note that a sphere S? is not topologically equiva-

lent to a torus 72.

4. C-space of a PR joint can be written R' x S!.

e The C-space of a planar rigid body (e.g., the chassis of a mobile robot) with a 2R robot arm can

be written as R? x S' x T? = R? x T3.

e The C-space of a rigid body in three-dimensional space can be described by a point in R?, plus a
point on a two-dimensional sphere S?, plus a point on a one-dimensional circle S!, giving a total

C-space of R? x S? x S'.
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Table 2.2: Four topologically different two-dimensional C-spaces and example co-
ordinate representations. In the latitude-longitude representation of the sphere, the
latitudes —90" and 90 each correspond to a single point (the South Pole and the North
Pole, respectively), and the longitude parameter wraps around at 180° and —180; the
edges with the arrows are glued together. Similarly, the coordinate representations of

the torus and cylinder wrap around at the edges marked with corresponding arrows.




3.2

Configuration Space Representation

To perform computations, we must have a numerical representation of the space, consisting of a
set of real numbers. - e.g., vector (an ordered list of variables)

It is important to keep in mind that the representation of a space involves a choice, and therefore
it is not as fundamental as the topology of the space, which is independent of the representation.

Explicit parameterization of the space : consider the surface on the sphere with latitude-longitude
coordinates

— it is unsatisfactory if you are walking near the North Pole (latitude = 90°) or South Pole (lat-
itude = —90°), where taking a very small step can result in a large change in the coordinates.

— The North and South Poles are singularities of the representation, and the existence of sin-
gularities is a result of the fact that a sphere does not have the same topology as a plane.

To resolve singularities

— use more than one coordinate chart on the space : As the configuration approaches a singu-
larity in one chart, you simply switch to another chart where the North and South Poles are
far from singularities. e.g., cylindrical coordinates

— use an implicit representation of the space : We can use (z,y, z) in three-dimensional space
with one constraint z? + y? + 22> = 72, since the a point moving smoothly around the sphere is
represented by a smoothly changing (z,y, z), even at North and South Poles.

Rotation matrix uses nine numbers, subject to six constraints, to represent the three orientation
freedoms of a rigid body in space. - it is singularity-free and able to apply linear algebra.
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4 Configuration and Velocity Constraints

Figure 2.10: The four-bar linkage.

For robots containing one or more closed loops, usually an implicit representation is more easily
obtained than an explicit parametrization.

Consider planar four-bar linkage

x-coordinate gy . L1 COSs 91 + LQ COS(@l -+ 92) -+ L3 COS((91 -+ 92 + 93) + L4 COS(@l + 02 + 83 + 94) =0
y-coordinate qgs . L1 sin 91 + L2 Siﬂ(Ql + 92) + L3 sin(91 + 92 + 93) + L4 sin(91 + 92 + 93 + 94) =0
orientation ¢g3: 61+ 60, +03+604—27=0

It has one dof because of four variables 61, 65, 05,6, and above three constraints (loop-closure equa-
tions)

The set of all solutions forms a one-dimensional curve in the four-dimensional joint space and
constitutes the C-space.
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The C-space can be implicitly represented by the column vector § = [#;,---,0,]7 € R" and the
loop-closure equations of the form (constraints)

91(917"‘ 70n>
g(0) = : € RF

gk(917'°° 79n)

Such constraints are known as holonomic constraints that reduce the dimension of the C-space.

The C-space can be viewed as a surface of dimension n — k& (assuming that all constraints are
independent) embedded in R".

Let us take time derivative of the constraints as follow:

991 ¢ .1 991y 991 .. 9o '
00, 01 + + 30, On 00, 90, 01 0
gk g .1 99 g Ogr ... Ogk )
00, 01 + + 00, On 00, 20, On 0

Above can be rewritten as the compact form:

@g . .
2 00=0 = A@)0=0

e Velocity constraints of this form are called Pfaffian constraints. Inversely,

— holonomic if Pfaffian constraints can be integrated to give equivalent configuration constraints

— nonholonomic if Pfaffian constraints cannot be integrated
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Figure 2.11: A coin rolling on a plane without slipping.

Consider an upright coin of radius r rolling on a plane.

e The configuration of the coin is given by the contact point (x,y) on the plane, the steering angle
¢, and the angle of rotation 6.

The C-space of the coin is therefore R? x T2, where 77 is the two-dimensional torus.

This C-space is four dimensional.

Assuming that coin rolls w/o slipping, the coin must always rolls in the direction indicated by
(cos ¢, sin ¢) with forward speed r6:

T\ _ v cos ¢

Y sin ¢

Collecting the four C-space coordinates into a single vector ¢ = [q1, ¢2, g3, q4]T = [7, 9, ¢,0]7 € R*xT?,
the above no-slip rolling constraint can then be expressed in the form of Pfaffian constraints:

[1 0 0 —rcosgs

_ lda=0 = Algq=0
0 1 0 —rsings
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e Let us check whether the Pfaffian contstraints are integrable or not.

0
6_91 =1 — 91((1) =q + hl(% g3, CJ4)
41
0 Oh
go1 _ 9 _ 0 — hi(q2, g3, q1) = l1(q3, Q1) — 91(¢) = ¢ + (g3, )
dg2 O
0 ol
8_Z; - 0_qi, =0 = hlg.w) =kaw — 0l =aqa+kiq
0 ok : :
IR _ T cos q3 —  ki(qs) = —rqecosqs ki is a function of g3
g1 Oy

e No such ¢, exists and ¢, does not exist. — it is non-integrable.— nonholonomic

e Such Pfaffian constraints reduce the dimension of the feasible velocities of the system but do not
reduce the dimension of the reachable C-space.

e Examples of nonholonomic constraints : conservation of momentum, rolling w/o slipping.
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5 Task Space and Workspace

The task space is a space in which the robot’s task can be naturally expressed.

e If the robot’s task is to plot with a pen on a piece of paper, the task space would be R?.

e The decision of how to define the task space is driven by the task, independently of the robot.
The workspace is a specification of the configurations that the end-effector of the robot can reach.

e Definition of the workspace is primarily driven by the robot’s structure, independently of the task.

1. C-Space of planar 2R : 77, its workspace : R? (planar

\ B / "\Mh_-_f / disk)

2. C-Space of planar 3R : T3, its workspace : R? (planar

e —----~--h\ @% disk)
Q”/ ' o HN 3. C-Space of spherical 2R : S2, its workspace : S? (sur-
y o, ,;:JJA;:?“# face of the sphere)

. C-Space of wrist mechanism : S? x S', its workspace :

52 % S! (all the orientation)

(c) (d)

Figure 2.12: Examples of workspaces for various robots: (a) a planar 2R open
chain; (b) a planar 3R open chain; (c) a spherical 2R open chain; (d) a 3R orienting
mechanism.
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Fi 2.14: A r-painti bot.
Figure 2.13: SCARA robot. gure Spray-painting 1o

Example 2.7. (SCARA robot)

e it has an RRRP open chain that is widely used for tabletop pick-and-place tasks.

e end-effector configuration is completely described by (x,y, z, ®)

e its task space would typically be defined as R> x S!

e its workspace would typically be defined as the reachable points in R? x S!
Example 2.8. (standard 6R industrial manipulator)

e assume that it is adapted to spray-painting applications

e end-effector configuration is completely described by (x,vy, z, ¢,0,1)

o its task space would typically be defined as R> x S? because the rotation about the nozzle axis do
not matter

e its workspace would typically be defined as the reachable points in R? x S?
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6 Homework : Chapter 2

e Please solve and submit Exercise 2.5, 2.6, 2.7, 2.11, 2.12, 2.14, 2.19, 2.25, 2.26, 2.31, 2.32 till
March 26 (upload it as a pdf form or email me)

e If you let me know what the numbers you cannot solve until March 23, I will include the solving
process in the next lecture.
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