
(PID) 6 Performance Tuning
1. Most mechanical systems are described by Lagrangian equation of motion and their con-

trollers consist of the PID. For this purpose, an inverse optimal PID controller can be used:
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and it brings the performance limitation for trajectory tracking system models expressed by

M(q)ṡ+ C(q, q̇)s = w(t, x) + u ẋ = A(x, t)x+B(x, t)w +B(t, x)u

where K > 0, KP > 0, KI > 0, K2
P
> 2KI and u = �⌧ .

2. In the previous lecture, we already obtained three tuning rules such as
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3. Further, we will derive three additional performance tuning rules of an inverse optimal PID
control from its performance limitation.

• Square tuning rule

• Linear tuning rule

• Compound tuning rule

144



(PID) 6.1 Performance Limitation

1. (Refer to Result of Theorem 5.3) If the PID controller (137) is applied to trajectory tracking
mechanical system as proved in Theorem 5.3, then the derivative of the Lyapunov function
has the following form:
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2. (Extended Disturbance) The extended disturbance of (110) can be expressed as a function of
time and state vector as following form:

w(x, t) = M(q) (q̈d +KP ė+KIe) + C(q, q̇)
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where H(x, t) ,
⇥
CKI MKI + CKP MKP
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and h(x, t) , Mq̈d + Cq̇d + g + d.

3. (Assumptions for Boundedness) Now, consider the Euclidian norm of extended disturbance of
(139). Then we can get some insight such that the extended disturbance can be bounded by
the function of Euclidian norm of a state vector under the following two assumptions:

(A1) : the configuration derivative q̇ is bounded

(A2) : the external disturbance d(t) is bounded.
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• by the bounds of q̇, the Coriolis and centrifugal matrix C(q, q̇) can be bounded, e.g.,
|C(q, q̇)|  c0|q̇| with a positive constant c0.

• we know that the gravitational torque g(q) is bounded if the system stays at the earth,
|g(q)|  g0.

• an inertia matrix M(q) is bounded by its own maximum eigenvalue m, e.g., |M(q)|  m.

• the desired configurations (qd, q̇d, q̈d) are specified as the bounded values, |qd| < 1, |q̇d| < 1

and |q̈d| < 1.

4. (Norm Bound of Extended Disturbance) Then, we can derive the following relationship from
above assumptions:

|w|2 = [H(x, t)x+ h(x, t)]T [H(x, t)x+ h(x, t)] = xT (HTH)x+ 2(hTH)x+ (hTh)

 c1|x|
2 + c2|x|+ c3 (140)

where c1, c2 and c3 are some positive constants.
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5. (Shape of Extended Disturbance) The norm of the extended disturbance can be upper bounded
by the function of that of state vector, conversely, the norm of a state vector can be lower
bounded by the inverse function of that of extended disturbance:

|w|  ⇢�1
o
(|x|) ⌧ ⇢o(|w|)  |x|,

where ⇢o(|w|) = 0 for 0  |w| 
p
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p
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• Also, the constant c3 of (140) cannot be zero either in the case of a trajectory tracking
control or in the presence of the external disturbances and the gravitational torques.

• Though the function ⇢o must be a continuous, unbounded and increasing function, ⇢o is
not a class K1 function because it is not strictly increasing as shown in above figure.

• If there exist no external disturbances (d(t) = 0) and the gravity torques (g(q) = 0),
then the GAS can be proved for the set-point regulation control (q̈d = 0, q̇d = 0) because
c2 = 0, c3 = 0 and the function ⇢o becomes a class K1.

6. The control performance is determined by the gain values of a controller, hence, it is important
to perceive the relation between the gain values and the errors.
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7. (Theorem 6.1) Let K = kI,KP = kP I and KI = kII 2 <
n⇥n. Suppose that �min is the minimum

eigenvalue of following matrix
QK = Q+ PBKBTP, (141)

and that the performance limitation |x|P.L is defined as the Euclidian norm of state vector
that satisfies V̇ = 0. If the PID controller in Theorem 5.3 is applied to the trajectory tracking
system model and �min is chosen sufficiently large and � sufficiently small so that �min�2�2c1 >

0 can be satisfied, then its performance limitation is upper bounded by
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where c1, c2, c3 are coefficients for the upper bound of extended disturbance (140), �� = �min �
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This equation (142) can be regarded as the performance prediction equation which can predict
the performance of the closed-loop system according as the gains change.
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8. (Core of proof) From the result of Theorem 5.3,
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If we let V̇ = 0, then we can get

|x|P.L 

✓
�2

��

◆"
c2 +

s

c22 + 2c3

✓
��

�2

◆#

where �� , �min � 2�2c1 > 0.

!"!#$% !"!

&'!
"

(

)**+,-./012-/3-(

(45657
$

$

$
$

(4"687

9. Since the performance limitation |x|P.L upper bounded by the inequality (142) is the convergent
point as we can see in above figure, the norm of state vector tends to stay at this point.

10. This analysis can naturally illustrate the performance tuning.
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(PID) 6.2 Square and Linear Tuning Rules

1. The exact performance tuning measure is the performance limitation of (142) in Theorem 6.1,
however, the coefficients c1, c2, c3 are unknowns.

2. To develop an available tuning rules, let us rewrite the performance limitation (142) using
p
a2 + b2  |a|+ |b|:
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where �� = �min � 2�2c1. For simplicity,

• if � is chosen sufficiently small, then �� ⇡ �min.

• if k2
P
� 2kI > 1 and kI > kP > 1 can be satisfied, then the �min is lower bounded by k from

(143), i.e., �min � k.
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3. (Tuning Rules) By letting �� ⇡ k and defining the tuning variable as �
p
k
, the performance

limitation of (145) can be expressed by the function of tuning variable �
p
k

as following form:
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• For a large tuning variable,

|x|P.L _ �2, for a small
p

k. (147)

because the second order term governs the inequality.

• For a small tuning variable,

|x|P.L _ �, for a large
p

k, (148)

because the first order term becomes dominant.

• As a summary, we propose two tuning methods;

– coarse tuning that brings the square relation of (147)
– fine tuning that brings the linear relation of (148).
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(PID) 6.3 Compound Performance Tuning

1. If the inverse optimal PID controller (137) is applied to the trajectory tracking system (111),
then the closed-loop system is obtained as
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trajectory tracking system (111), then the composite error is upper bounded as following form:
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where s(0) is the initial composite error vector, � is a maximum eigenvalue of inertia matrix
M , and k is a minimum diagonal element of K.
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3. (Proof) Let us differentiate the positive real-valued function
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Using the maximum eigenvalue of inertia matrix M and the minimum diagonal element of
gain matrix K, above inequality can be simplified to:

d

dt

✓
�

2
|s|2
◆

 �

✓
k +

1

2�2

◆
|s|2 +

�2

2
|w|2.

If we multiply above inequality by e
2k�2+1
��2

t, then it becomes

d

dt

✓
�|s|2e

2k�2+1
��2

t

◆
 �2

|w|2e
2k�2+1
��2

t. (150)

153



Integrating (150) over [0,t], we arrive at the following form:
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By applying the property of
p
a2 + b2  |a|+|b| to right hand side of above inequality, an explicit

upper bound of composite error vector is obtained as follow:
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• The first term of right hand side of (149) is a class KL function �(|s(0)|, t) because it is an
increasing function for |s(0)| and decreasing one for time t.

• The second term is a class K function ↵(kwkL1) since it is an increasing one for kwkL1.

• Hence, the extended disturbance input-to-state stability (ISS) can be also proved from
Theorem 6.2 because the upper bound (149) follows the ISS characteristics.
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4. Though the exponential term of (149) goes to zero as t ! 1, the composite error cannot
be zero because the extended disturbance (110) includes the inverse dynamics according to
desired configurations (qd, q̇d, q̈d) and gravity force g(q), moreover, w 6= 0 as shown in following
equation even when e = 0, ė = 0,

R
edt = 0:

w(t, ė, e,

Z
edt) =Mq̈d + Cq̇d + g + d

+MKP ė+ (MKI + CKP ) e+ CKI

Z
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5. As a matter of fact, the upper bound of composite error naturally suggests a new performance
tuning rule.
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6. In the trajectory tracking control, since the initial composite error s(0) of (149) can be set to
zero vector by the initialization of control system, the composite error can be bounded only by
L1 norm of the extended disturbance as follows:
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7. Therefore, if the utilized PID controller can stabilize the system, then we can find the following
proportional relation from (152):
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The above is referred to as compound tuning rule, and indeed it combines both square and
linear tuning rules

8. (Remark 6.2) For a state vector, the square and linear tuning rules were proposed and proved.
For a composite error, these square and linear tuning rules can be also found by approximating
(153) according to the size of gain k as follows:

Square Tuning : |s| / �2, for a small k,

Linear Tuning : |s| / �, for a large k.
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(PID) Summary on Six Gain Tuning Rules of PID Control
When the following PID controller form is utilized for mechanical systems,
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we have six performance tuning rules as follows:

1. In Chapter 5, we have three tuning rules
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3. (MatLab Code)

close all

clear all

s_time = 0.002; tf = 1;

q = 0; qdot = 0; eint = 0;

qf = 90*(pi/180); q0 = 0;

global m;

global l;

global g;

global u;

global kf;

m = 1; l = 1; g = 9.806; kf = 0.5;

n=1;

hold on

axis([-1.5 1.5 -1.5 1.5]);

grid

x = l*sin(q); Ax = [0, x]; y = -l*cos(q); Ay = [0, y];

p = line(Ax,Ay,’EraseMode’,’xor’,’LineWidth’,[5],’Color’,’b’);

for t = 0 : s_time : tf

%%%% Trajectory Generation %%%%
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q_d = q0 + 3*(qf-q0)*t*t - 2*(qf-q0)*t*t*t;

qdot_d = 6*(qf-q0)*t - 6*(qf-q0)*t*t;

%%%% PID after determining the initial gains using ZN method

Kp = 41.83; Ti = 0.36; Td = 0.09;

%u = Kp*(e + Td*edot + 1/Ti*eint); % Typical PID form

%u = (K+1/gamma/gamma)*(edot + K_P*e + K_I*eint); % Inverse Optimal PID

K = Kp*Td;

K_P = 1/Td;

K_I = 1/(Ti*Td);

gamma = 1;

e = q_d-q;

edot = qdot_d - qdot;

eint = eint + e*s_time;

u = (K+1/gamma/gamma)*(edot + K_P*e + K_I*eint);

[tt,z] = ode45(’pendulum’, [0, s_time], [q; qdot]);

index = size(z); q = z(index(1), 1); qdot = z(index(1), 2);

x = l*sin(q); Ax = [0, x]; y = -l*cos(q); Ay = [0, y];

n=n+1;

data(n+1,1) = t; data(n+1,2) = q_d; data(n+1,3) = q; data(n+1,4) = q_d-q;

if rem(n,10) == 0

set(p,’X’, Ax, ’Y’,Ay)

drawnow
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end

end

close all

figure

ax1 = subplot(4,1,1); % top subplot

ax2 = subplot(4,1,2); % mid subplot

ax3 = subplot(4,1,3); % bottom subplot

ax4 = subplot(4,1,4); % bottom subplot

plot(ax1,data(:,1),data(:,2))

ylabel(ax1,’desired’);

plot(ax2,data(:,1),data(:,3))

ylabel(ax2,’actual’);

plot(ax3,data(:,1),data(:,2),data(:,1),data(:,3))

ylabel(ax3,’desired and actual’);

plot(ax4,data(:,1),data(:,4))

ylabel(ax4,’error’);

max(data(:,4))

• (HW # 10) solve problem 6.1
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