
(PID) 3.2 Completion of Squares
1. For given linear system and performance index to be optimized:

ẋ = Ax+Bu J = lim
t!1


V (x) +

1

2

Z
t

0
(xTQx+ uTRu) d⌧

�
with V (x) =

1

2
xTPx (78)

with R = RT > 0 and Q = QT
� 0, using the Riccati equation (77) of Q = �ATP � PA +

PBR�1BTP , the performance index can be manipulated as follows:

J = lim
t!1


V (x(t)) +

1

2

Z
t

0
(xTQx+ uTRu) d⌧

�

= lim
t!1


V (x(t)) +

Z
t

0

1

2
xT (�ATP � PA+ PBR�1BTP )x+

1

2
uTRu d⌧

�

= lim
t!1


V (x(t))�

Z
t

0

✓
1

2
xT (ATP + PA)x+ xTPBu

◆
d⌧ +

1

2

Z
t

0

�
xTPBR�1BTPx+ 2xTPBu+ uTRu

�
d⌧

�

= lim
t!1


V (x(t))�

Z
t

0
V̇ d⌧ +

1

2

Z
t

0

���R
1
2u+R�

1
2BTPx

���
2
d⌧

�

= lim
t!1


V (x(t))� V (x(t)) + V (x(0)) +

1

2

Z
t

0

���R
1
2u+R�

1
2BTPx

���
2
d⌧

�

= V (x(0)) +
1

2

Z
1

0

���R
1
2u+R�

1
2BTPx

���
2
d⌧

If we choose u = �R�1BTPx, then we get the minimal performance index value

) J = V (x(0)) = constant ( u = �R�1BTPx (79)
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(PID) 3.3 HJB Equation (Dynamic Programming)
1. (HJB) For given system and performance index to be optimized:

ẋ = f(x, u, t) J = lim
t!1


V (x(t), t) +

Z
t

0
g(x(⌧), u(⌧), ⌧)d⌧

�
(80)

if the Hamiltonian quantity is defined using the generalized sweep method � = V T

x
= @V

@x

(notice that Vx is a row vector and in the case of linear system � = Px when V (x) = 1
2x

TPx)

H(x, u, Vx, t) = g(x, u, t) + Vx(x, t)f(x, u, t) (81)

then Hamilton-Jacobi-Bellman (HJB) equation is obtained

) Vt +min
u

H(x, u, Vx, t) = 0 (
@H

@u
= 0 and

@2H

@u2
> 0 (82)

and the nonlinear optimization problem is resolved only if the HJB can be solved.

2. Let us consider the performance index as following form:

J = lim
t!1

[V (x, t) +

Z
t

0
g(x, u, ⌧)d⌧ ]

Since g(x, u, t) > 0 for all t � 0, the minimum cost is equal to the Lyapunov function

J⇤(x, t) ! V (x, t)

In other words, if we can find the Lyapunov function satisfying (82), then we can also find the
minimum cost because the minimum cost is equal to the Lyapunov function.
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3. (Dynamic Programming for Derivation of HJB)

• For any time interval t  ⌧  tf , the cost (performance index value) is

J(x(t), t, u(⌧)t⌧tf ) = V (x(tf), tf) +

Z
tf

t

g(x(⌧), u(⌧), ⌧)d⌧

• If the minimizing control input is applied in the given time interval, the minimum cost is
achieved as follows:

J⇤(x(t), t) = min
u(⌧)


V (x(tf), tf) +

Z
tf

t

g(x(⌧), u(⌧), ⌧)d⌧

�

= min
u(⌧)


V (x(tf), tf) +

Z
t+�t

t

g(x(⌧), u(⌧), ⌧)d⌧ +

Z
tf

t+�t

g(x(⌧), u(⌧), ⌧)d⌧

�

= min
u(⌧)

Z
t+�t

t

g(x(⌧), u(⌧), ⌧)d⌧

�
+min

u(⌧)


V (x(tf), tf) +

Z
tf

t+�t

g(x(⌧), u(⌧), ⌧)d⌧

�

= min
u(⌧)

Z
t+�t

t

g(x(⌧), u(⌧), ⌧)d⌧

�
+ J⇤(x(t+�t), t+�t)

• If the Taylor series expansion is applied to J⇤(x(t+�t), t+�t) at the point J⇤(x(t), t), then
we have

J⇤(x(t+�t), t+�t) = J⇤(x(t), t) + J⇤

x
(x(t), t)[x(t+�t)� x(t)] + J⇤

t
(x(t), t)�t+ higher order

= J⇤(x(t), t) + J⇤

x
(x(t), t)ẋ�t+ J⇤

t
(x(t), t)�t+ higher order

= J⇤(x(t), t) + min
u(t)

[J⇤

x
(x(t), t)f(x(t), u(t), t)�t] + J⇤

t
(x(t), t)�t+ higher order
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• If the first-order part of J⇤(x(t+�t), t+�t) is applied to the minimum cost, then

J⇤(x(t), t) =min
u(⌧)

Z
t+�t

t

g(x(⌧), u(⌧), ⌧)d⌧

�

+ J⇤(x(t), t) + min
u(t)

[J⇤

x
(x(t), t)f(x(t), u(t), t)�t] + J⇤

t
(x(t), t)�t+ higher order

+

0 =min
u(⌧)

Z
t+�t

t

g(x(⌧), u(⌧), ⌧)d⌧ + J⇤

x
(x(t), t)f(x(t), u(t), t)�t

�
+ J⇤

t
(x(t), t)�t+ higher order

• Dividing by �t and taking the limit as �t ! 0, we have

J⇤

t
(x(t), t) + min

u(t)
[g(x(t), u(t), t) + J⇤

x
(x(t), t)f(x(t), u(t), t)] = 0

• If the minimum cost is assigned to the Lyapunov function J⇤(x, t) = V (x, t), then we have
the HJB equation as follows:

) Vt(x, t) + min
u

[g(x, u, t) + Vx(x, t)f(x, u, t)] = 0 (83)
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4. (Example 3.3) Obtain the HJB equation of the system with the performance index as follows:

ẋ = A(x, t)x+B(x, t)u J = lim
t!1


V (x(t), t) +

1

2

Z
t

0
xTQ(x, ⌧)x+ uTR(x, ⌧)u d⌧

�
(84)

with Q(x, t) = QT (x, t) � 0 and R(x, t) = RT (x, t) > 0 for all t � 0 and x.

• The Hamiltonian quantity is

H(x, u, Vx, t) =
1

2
xTQ(x, t)x+

1

2
uTR(x, t)u+ Vx(x, t)[A(x, t)x+B(x, t)u]

• Its minimum is achieved

@H

@u
= R(x, t)u+BT (x, t)V T

x
(x, t) = 0 ) u = �R�1(x, t)BT (x, t)V T

x

• The HJB equation (82) is obtained as

Vt(x, t) + min
u

H(x, u, Vx, t) = 0

+

) Vt(x, t) + Vx(x, t)A(x, t)x�
1

2
Vx(x, t)B(x, t)R�1(x, t)BT (x, t)V T

x
(x, t) +

1

2
xTQ(x, t)x = 0

• After solving the HJB equation, we can determine the optimal control input, but it is not
easy to solve because the it is nonlinear partial differential equation.

• The control input u⇤ = �R�1(x, t)BT (x, t)V T

x
is called LQ control in the case of linear

system because the performance index follows the linear quadratic form.
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(PID) 3.4 HJI Equation
1. Hamilton-Jacobi-Isaacs (HJI) equation is similar with HJB equation!

2. For given system and performance index to be optimized:

ẋ = f(x, u, w, t) J = lim
t!1


V (x(t), t) +

Z
t

0
g(x(⌧), u(⌧), w(⌧), ⌧)d⌧

�
(85)

if the Hamiltonian quantity is defined

H(x, u, w, Vx, t) = g(x, u, w, t) + Vx(x, t)f(x, u, w, t) (86)

then Hamilton-Jacobi-Isaacs (HJI) equation is obtained

) Vt +min
u

max
w

H(x, u, w, Vx, t) = 0 (
@H

@u
= 0

✓
@2H

@u2
> 0

◆
and

@H

@w
= 0

✓
@2H

@w2
< 0

◆

(87)

3. u(t) is a player (control input) to minimize the cost J while w(t) is an opponent (permissible
disturbance input) to maximize the allowable cost.
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4. (Example 3.4) Obtain the HJI equation of the system with the performance index as follows:

ẋ = A(x, t)x+B1(x, t)u+B2(x, t)w J = lim
t!1


V (x(t), t) +

1

2

Z
t

0
xTQ(x, ⌧)x+ uTR(x, ⌧)u� �2wTw d⌧

�

(88)

with Q(x, t) = QT (x, t) � 0 and R(x, t) = RT (x, t) > 0 for all t � 0 and x.

• The Hamiltonian quantity is

H(x, u, w, Vx, t) =
1

2
xTQ(x, t)x+

1

2
uTR(x, t)u�

�2

2
wTw + Vx(x, t)[A(x, t)x+B1(x, t)u+B2(x, t)w]

• Its minimum player and opponent are obtained

@H

@u
= R(x, t)u+BT

1 (x, t)V
T

x
(x, t) = 0 u = �R�1(x, t)BT

1 (x, t)V
T

x

@H

@w
= ��2w +BT

2 (x, t)V
T

x
(x, t) = 0 w =

1

�2
BT

2 (x, t)V
T

x

• The HJI equation (87) is obtained as

Vt +min
u

max
w

H(x, u, w, Vx, t) = 0

+

) Vt(x, t) + Vx(x, t)A(x, t)x�
1

2
Vx(x, t)B1(x, t)R

�1(x, t)BT

1 (x, t)V
T

x
(x, t)

+
1

2�2
Vx(x, t)B2(x, t)B

T

2 (x, t)V
T

x
(x, t) +

1

2
xTQ(x, t)x = 0

• After solving the HJI equation, we can determine both the optimal control input and the
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allowable maximal disturbance input, but it is not easy to solve because the it is nonlinear
partial differential equation.

• The control input u⇤ = �R�1(x, t)BT

1 (x, t)V
T

x
is called H1 control in the case of linear sys-

tem or L2 gain control in the case of nonlinear system because L2-gain from the distur-
bance input to the state is  �.

• The disturbance input w⇤ = 1
�2BT

2 (x, t)V
T

x
is called worst-case disturbance because it is a

maximal allowable disturbance without affecting the stability.
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5. (Example 3.5) For given scalar unstable system and the performance index,

ẋ = x+ u+ w J = lim
t!1


V (x(t)) +

1

2

Z
t

0
x(⌧)2 + u(⌧)2 � �2w(⌧)2 d⌧

�
,

(1) obtain LQ optimal controller by letting w(t) = 0 ?
(2) obtain H1 (L2-gain) optimal controller when � =

p
2 ?

(3) compare the closed-loop responses of H1 optimal controller and LQ optimal controller
against the disturbance input w(t) = �(t) and zero initial condition x(0) = 0 ?
(4) show that H1 optimal controller becomes equal to LQ optimal controller as � ! 1

(Solution)

(1) In (Example 3.1), we already obtained the LQ optimal controller when w(t) = 0:

) uLQ = �(1 +
p

2)x

(2) Hamiltonian function for a given system is

H(x, u, Vx) =
1

2
x2 +

1

2
u2 �

�2

2
w2 + Vx(x+ u+ w)

To find the H1 optimal control input, let us differentiate the Hamiltonian function as
follows:

@H

@u
= u+ Vx = 0 ! ) u = �Vx

@2H

@u2
= 1 > 0 ! H1 optimal control is achieved when u⇤ = �Vx
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Also, the worst-case disturbance can be found by using the following relation:

@H

@w
= ��2w + Vx = 0 ! ) w =

1

�2
Vx

@2H

@w2
= ��2 < 0 ! worst-case disturbance is achieved (occurred) when w⇤ =

1

�2
Vx

Now the HJI equation is obtained as follow:

Vt +min
u

max
w

H(x, u, w, Vx, t) = 0

#

Vt + Vxx�
1

2
V 2
x
+

1

2�2
V 2
x
+

1

2
x2 = 0

In order to solve the HJI equation, let us assume V (x) = 1
2px

2 with the positive constant
p > 0. Then we have Vt = 0, Vx = px and

Vt + Vxx�
1

2
V 2
x
+

1

2�2
V 2
x
+

1

2
x2 = px2 �

1

2
p2x2 +

1

2�2
p2x2 +

1

2
x2 =

✓
p�

1

2
p2 +

1

2�2
p2 +

1

2

◆
x2 = 0

Since x 6= 0, we can get the following
✓
1�

1

�2

◆
p2 � 2p� 1 = 0 ! p =

�

�2 � 1
(� ±

p
2�2 � 1)

Here, since � =
p
2, the positive constant p can be determined as follow

p = 2 +
p

6
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Finally, the H1 optimal controller is

) u1 = �(2 +
p

6)x when � =
p

2

(3) The closed-loop equation can be obtained by applying the H1 optimal controller to the
system as follows:

ẋ = x� (2 +
p

6)x+ w = �(1 +
p

6)x+ w

To obtain the response of above differential equation, we take the Laplace transform

sX(s)� x(0) = �(1 +
p

6)X(s) +W (s) ! X(s) =
1

s+ (1 +
p
6)

since W (s) = 1

Take an inverse Laplace transform to obtain the response, then

) x1(t) = e�(1+
p
6)t for t � 0

On the other hand, the closed-loop equation can be obtained by applying the LQ optimal
controller to the system as follows:

ẋ = x� (1 +
p

2)x+ w = �

p

2x+ w

To obtain the response of above differential equation, we take the Laplace transform

sX(s)� x(0) = �

p

2X(s) +W (s) ! X(s) =
1

s+
p
2

since W (s) = 1

Take an inverse Laplace transform to obtain the response, then

) xLQ(t) = e�
p
2t for t � 0
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As we can see in the closed-loop responses of x1(t) and xLQ(t), the H1 controller shows
the better performance against the disturbances because (1 +

p
6) >

p
2

(4) As � ! 1,

p = lim
�!1

"
�2

�2 � 1
+

�
p
2�2 � 1

�2 � 1

#
⇡ 1 +

p

2

Hence, the H1 controller becomes equal to the form of LQ optimal controller as � ! 1 :

) u1 ⇡ uLQ = �(1 +
p

2)x as � ! 1

112



(PID) HJB and HJI Equations
1. HJB equation

• Generalized Hamilton-Jacobi theory [1967]

• Multi-variable system and combinational problem

• Dynamic programming

• First order nonlinear PDE

• (in the case of linear system) Riccati equation for LQ control problem

2. HJI equation

• Isaacs theory [1975]

• Two player differential game theory

• Minimizing player : control input (Opponent : disturbance input)

• (in the case of linear system) Riccati equation for H1 control problem

• (HW # 7) solve 4 problems 3.2, 3.3, 3.6, and 3.8
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(PID) 4 Regulation and Tracking Control
1. There are two types of controllers according to the way that target is given.

2. Some targets might be given as a constant force or position, but some targets should be speci-
fied as a function of time.

3. We classify the controllers;

• set-point regulation control when the constant target is given,

• trajectory tracking control when the target profile is given as function of time.

4. The set-point regulation control belongs to the time-invariant control system, but the trajec-
tory tracking control to the time-varying control system.
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(PID) 4.1 Global Asymptotic Stability of Set-Point PD Control
1. Let us consider the set-point regulation (point-to-point) control for Hamiltonian systems.

2. For given Hamiltonian system (62), let us assume that there is no gravity force g(q) = 0

q̇ = M�1(q)p ṗ = CT (q, q̇)M�1(q)p+ ⌧.

3. Putting a PD control as following form:

⌧ = �KDq̇ �KP (q � qs) (89)

into the Hamiltonian equation of motion, the closed-loop control system is obtained as follows:

q̇ = M�1(q)p ṗ = CT (q, q̇)M�1(q)p�KDM
�1(q)p�KP (q � qs). (90)

where KD > 0, KP > 0 are constant diagonal gain matrices, qs is the set-point (target position)
to be controlled, and p = 0, q = qs is the equilibrium point.

4. Consider Lyapunov function composed of kinetic energy and potential energy by spring effect
due to KP term

V (p, q) =
1

2
pTM�1(q)p+

1

2
(q � qs)

TKP (q � qs) (91)

then its time derivative is obtained along the control system trajectory of (90) as follows:

V̇ (p, q) = pTM�1(q)ṗ+
1

2
pTṀ�1(q)p+ (q � qs)

TKP q̇

= pTM�1(q)CT (q, q̇)M�1(q)p� pTM�1(q)KDM
�1(q)p+

1

2
pTṀ�1(q)p.
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Since we know that Ṁ�1 = �M�1ṀM�1 and Ṁ(q)� 2CT (q, q̇) is skew symmetric, it is easy to
see that

V̇ (p, q) =
1

2
pTM�1(q)

h
2CT (q, q̇)� Ṁ(q)

i
M�1(q)p� pTM�1(q)KDM

�1(q)p

= �pTM�1(q)KDM
�1(q)p =

⇥
pT qT

⇤ �M�1(q)KDM�1(q) 0
0 0

� 
p
q

�
 0 (92)

5. If there exists such a function V (x) defined in a certain domain ⌦ of the state space of x = (p, q)

containing the equilibrium point x0 = (0, qs), then for any initial condition x(0) = (p(0), q(0))

in a neighborhood of x0, the control system trajectory (p(t), q(t)) of equation (90) approaches
asymptotically to the maximal invariant set M contained in the set

E =
n
x = (p, q) 2 ⌦|V̇ = 0

o
.

In our case, according to equation (92), V̇ = 0 means p = 0 because KD > 0. Therefore, it holds
along any control system trajectory in E that

ṗ = �KP (q � qs).

This in turn implies that M is composed of the single point x0 = (p = 0, q = qs). Also, since
Lyapunov function (91) is unbounded function for x, i.e., V ! 1 as x ! 1, the global asymp-
totic stability (GAS) of the equilibrium point x0 = (0, qs) can be proved by PD control.
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(PID) 4.2 H1 Control for Trajectory Tracking
1. Trajectory tracking control is basically different from the set-point regulation control in that

the desired configuration qd(t), velocity q̇d(t) and its acceleration q̈d(t) profiles as time-varying
functions are added to typical Lagrangian systems.

2. For given Lagrangian system (57) of M(q)q̈ + C(q, q̇)q̇ + g(q) = ⌧ , let us define the errors as
state vectors:

e , qd � q ė , q̇d � q̇

and then, if we adopt the computed-torque control (CTC) as following form:

⌧ = cM(q)(q̈d +KP ė+KIe) + bC(q, q̇)(q̇d +KPe+KI

Z
edt) + bg(q)� u, (93)

where u is the auxiliary control input to be designed later and (cM, bC, bg) are the estimates for
the actual (M,C, g)
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3. The resultant system dynamics is given by

M(q)(ë+KP ė+KIe) + C(q, q̇)(ė+KPe+KI

Z
edt) = u+ w, (94)

with the disturbance vector w including the model uncertainties as follows:

w = [M(q)� cM(q)](q̈d+KP ė+KIe)+ [C(q, q̇)� bC(q, q̇)](q̇d+KPe+KI

Z
edt)+ [g(q)� bg(q)]. (95)

4. For given system (94), if we define the state vector like this

x ,

2

4
x1
x2
x3

3

5 =

2

4

R
edt
e
ė

3

5 2 <
3n,

then the state space representation of the system (94) can be simply written by

ẋ = A(x, t)x+B(x, t)w +B(x, t)u (96)

where

A(x, t) =

2

4
0n⇥n In⇥n 0n⇥n

0n⇥n 0n⇥n In⇥n

�M�1CKI �M�1CKP �KI �M�1C �KP

3

5 (97)

B(x, t) =

2

4
0n⇥n

0n⇥n

M�1

3

5 , (98)

in which 0n⇥n and In⇥n are n⇥n zero and identity matrices, respectively. From now on, we will
omit the dimension of the matrix if its dimension can be estimated.
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5. (Lemma 4.1) (HJI) For given system model (96), suppose there exists a smooth function
V (x, t) > 0 with V (0, t) = 0 that satisfies

HJI = Vt + VxAx+
1

2�2
VxBBTV T

x
�

1

2
VxBR�1BTV T

x
+

1

2
xTQx = 0, (99)

where Vt =
@V

@t
, Vx =

@V

@xT and � > 0, then the auxiliary control

u = �R�1BTV T

x
(100)

minimizes the performance index as following form:

J = lim
t!1


V (x, t) +

1

2

Z
t

0

⇥
xTQx+ uTRu� �2wTw

⇤
dt

�
(101)

6. (Proof) Let us consider the Lyapunov function:

V (x, t) =
1

2
xTP (x, t)x

with the concrete form of P (x, t) matrix as following form:

P (x, t) =

2

4
KIM(q)KI +KIKPK KIM(q)KP +KIK KIM
KPM(q)KI +KIK KPM(q)KP +KPK KPM(q)

M(q)KI M(q)KP M(q)

3

5 , (102)

notice that M(q) = M(qd(t) � x2) is function of time and x2, where the positive definiteness of
P (x, t) requires the following conditions

a) K > 0, KP > 0, KI > 0 are constant diagonal matrices,

b) K2
P
> 2KI .
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From now on, we would like to obtain the differential Riccati equation from HJI (99).

• Note that

Vt =
1

2
xT

@P

@t
x, Vx =

1

2
xT

@P

@xT
x+ xTP, (103)

• Fortunately, since P (x, t) is not a function of x1 =
R
edt and x3 = ė, the Vx can be simplified

as:
Vx =

1

2
xT

h
0 @P

@x
T
2
x 0

i
+ xTP.

• Now we have

VxAx =
1

2
xTPAx+

1

2
xTATPx+

1

2
xT

h
0 @P

@x
T
2
x 0

i
2

4
x2
x3
(⇤)

3

5 =
1

2
xT

⇢
PA+ ATP +

@P

@xT2
ẋ2

�
x

Vt + VxAx =
1

2
xT

⇢
@P

@t
+

@P

@xT2
ẋ2 + PA+ ATP

�
x =

1

2
xT

n
Ṗ + PA+ ATP

o
x

VxB = xTPB +
1

2
xT


@P

@xT
x

�
B = xTPB, because


@P

@xT
x

�
B =

h
0 @P

@x
T
2
x 0

i
2

4
0
0

M�1

3

5 = 0.

• Hence the HJI equation (99) can be rewritten as:

1

2
xT

⇢
Ṗ + PA+ ATP � PBR�1BTP +

1

�2
PBBTP +Q

�
x = 0,

• For any x 6= 0, the HJI equation is converted into the differential Riccati equation

Ṗ + PA+ ATP � PBR�1BTP +
1

�2
PBBTP +Q = 0 (104)
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• For arbitrarily given weighting matrices Q and R, the Lyapunov matrix (102) does not
always satisfy the differential Riccati equation (104) as well. The weighting matrices Q

and R will be inversely found from the differential Riccati equation.
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7. (Theorem 4.1) Assume that there exists a Lyapunov matrix P (x, t) (102) for Lagrangian sys-
tems (96). If the control input weighting is defined as following matrix:

R =

✓
K +

1

�2
I

◆�1

, (105)

then the state weighting matrix can be inversely obtained from the differential Riccati equa-
tion (104) as follows:

Q =

2

4
K2

I
K 0 0
0 (K2

P
� 2KI)K 0

0 0 K

3

5 > 0, (106)

where Q is a positive definite, diagonal and constant matrix.

8. (Proof) By using the definition of R of Eq. (105), the differential Riccati equation (104) can be
simplified to

Ṗ + PA+ ATP � PB

✓
R�1

�
1

�2
I

◆
BTP +Q = 0

+

Ṗ + ATP + PA� PBKBTP +Q = 0 (107)

By using the characteristics Ṁ �CT
�C = 0 of Lagrangian system, the following equation can

be firstly computed

Ṗ + ATP + PA =

2

4
0 KIKPK KIK

KIKPK 2KIK KPK
KIK KPK 0

3

5 .
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Also, the remaining term is

PBKBTP =

2

4
K2

I
K KIKPK KIK

KIKPK K2
P
K KPK

KIK KPK K

3

5 .

Hence, the matrix Q found from (107) has the form of (106).

Q = �(Ṗ + ATP + PA) + PBKBTP

=

2

4
0 �KIKPK �KIK

�KIKPK �2KIK �KPK
�KIK �KPK 0

3

5+

2

4
K2

I
K KIKPK KIK

KIKPK K2
P
K KPK

KIK KPK K

3

5

=

2

4
K2

I
K 0 0
0 (K2

P
� 2KI)K 0

0 0 K

3

5 > 0

where since K2
P
> 2KI , it is a positive definite, diagonal and constant matrix.
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9. For the constant weighting matrices Q and R given in above Theorem, since the Lyapunov
matrix (102) satisfies the differential Riccati equation (104), the auxiliary control input (100)
is a H1 controller for the given performance index (101), also, the computed-torque controller
of (93) has the following form:

⌧ =cM(q)(q̈d +KP ė+KIe) + bC(q, q̇)(q̇d +KPe+KI

Z
edt) + bg(q)

+

✓
K +

1

�2
I

◆✓
ė+KPe+KI

Z
edt

◆
, (108)

where we should notice that the auxiliary controller (100) has the form of PID one.

• (HW # 8) solve example 4.1, example 4.2, and prove the following two equations

Ṗ + ATP + PA =

2

4
0 KIKPK KIK

KIKPK 2KIK KPK
KIK KPK 0

3

5 .

and

PBKBTP =

2

4
K2

I
K KIKPK KIK

KIKPK K2
P
K KPK

KIK KPK K

3

5 .
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