
(PID) 1.1 What is PID Control?

1. Since Ziegler and Nichols’ PID tuning rules (1942) had been published, the PID control has
survived the challenges of advanced control theories,

• LQG control (or H2 control), H1 control

• adaptive control, robust control, and so forth.

2. In PID control,

• Proportional control : the present effort making a present state into desired state,

• Integral control : the accumulated effort using the experience information of bygone state

• Derivative control : the predictive effort reflecting the tendency information for ongoing
state.

3. The PID control

a) has long life force

b) has survived many challenges of advanced control theories

c) is the simplest and most intuitive control method

d) has been widely accepted in industry

e) has occupied more than 90% of control loops

f) is easy to use

g) has clear physical meanings

h) can be used irrespective of system dynamics
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(PID) 1.2 Ziegler-Nichols Tuning Rules of PID Gains

1. Ziegler-Nichols tuning rules (1942) (characteristics) are

• aimed at obtaining 25% maximum overshoot in step response

• convenient when mathematical models of plants are not known

• widely used to tune PID controllers in process control.
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first method second method

2. ZN first method: is applicable only when S-shaped curve is generated. In other words, if
the plant involves neither integrator nor complex-conjugate poles, then S-shaped curve is
generated.

PID(s) = Kp

✓
1 +

1

Tis
+ Tds

◆
where Kp = 1.2

T

LK
Ti = 2L Td = 0.5L

3. ZN second method: Using the proportional control action only, increase Kp from 0 to a critical
value Kcr until the output first exhibits sustained oscillations (corresponding period Pcr)

PID(s) = Kp

✓
1 +

1

Tis
+ Tds

◆
where Kp = 0.6Kcr Ti = 0.5Pcr Td = 0.125Pcr
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(PID) MATLAB Example

1. Consider the following pendulum dynamics

ml2q̈ +mgl sin(q) + kfsign(q̇) = ⌧

where m is mass, l is the length, g the gravitational acceleration constant, q the configuration,
kf the coulomb friction coefficient and ⌧ is the control torque input.

2. Above dynamics can be expressed in terms of state-space representation by letting x1 , q,
x2 , q̇, and u , ⌧ as follows:

ẋ1 = x2 ẋ2 = �
g

l
sin(x1)�

kf
ml2

sign(x2) +
1

ml2
u = �c1 sin x1 � c2sign(x2) + c3u

where c1 =
g

l
, c2 = kf

ml2
, and c3 =

1
ml2

.

3. The dynamics can be solved by using the MATLAB (filename of ‘pendulum.m’)

function dxdt = pendulum(t,x)
global m;
global l;
global g;
global u;
global kf;
dxdt = zeros(2,1);
dxdt(1) = x(2);
dxdt(2) = -(g/l)*sin(x(1)) -(kf/m/l/l)*sign(x(2)) + (1/m/l/l)*u;

78



4. Main code to implement (filename of ‘ZN first.m’)

close all
clear all
home

s_time = 0.002; tf = 2;
q = 0; qdot = 0; eint = 0;

global m;
global l;
global g;
global u;
global kf;

m = 1; l = 1; g = 9.806; kf = 0.5; n=1;
hold on
axis([-1.5 1.5 -1.5 1.5]);
grid
x = l*sin(q); Ax = [0, x]; y = -l*cos(q); Ay = [0, y];
p = line(Ax,Ay,’LineWidth’,[5],’Color’,’b’);

for i = 0 : s_time : tf
u = 1;
[t,z] = ode45(’pendulum’, [0, s_time], [q; qdot]);
index = size(z); q = z(index(1), 1); qdot = z(index(1), 2);
x = l*sin(q); Ax = [0, x]; y = -l*cos(q); Ay = [0, y];

79



n=n+1;
data(n+1,1) = i; data(n+1,2) = q;
if rem(n,10) == 0

set(p,’X’, Ax, ’Y’,Ay)
drawnow

end
end

5. Using the following MATLAB commands

>> ZN_first
>> plot(data(:,1),data(:,2))

K=0.102'

T=0.64'L=0.18'

6. Now we can determine the gains of the PID control as follows:

PID(s) =
U(s)

E(s)
= Kp

✓
1 +

1

Tis
+ Tds

◆
u(t) = Kp

✓
e(t) +

1

Ti

Z
t

0
e(⌧)d⌧ + Tdė(t)

◆
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where e(t) , qd(t)� q(t) and ė(t) , q̇d(t)� q̇(t)

Kp = 1.2
T

LK
= 1.2⇥

0.64

0.18⇥ 0.102
= 41.83

Ti = 2L = 2⇥ 0.18 = 0.36

Td = 0.5L = 0.5⇥ 0.18 = 0.09

7. Now let us modify the ‘ZN first.m’ MATLAB code instead of u = 1 for implementing PID
control as follows:

qd = 90*(pi/180);
e = qd-q;
edot = 0 - qdot;
eint = eint + e*s_time;

Kp = 41.83; Ti = 0.36; Td = 0.09;
u = Kp*(e + Td*edot + 1/Ti*eint);

8. Here we can confirm that the first method does not exactly show the 25% overshoot, but by
adjusting the Ti and Td a little bit, we can get the better result. Thus we can know that the
first method must be a good starting point for PID gain tuning. For example, if we take the
gains as follows, then the better result is obtained.

Kp = 41.83 Ti = 0.36 ⇤ 1.6 Td = 0.09 ⇤ 1.8

• (HW # 5) solve 4 problems 1.6, 1.7, 1.8, and 1.9 (using 2nd Method)
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(PID) 2. Nonlinear Mechanical Systems
Mechanics : equation of motion

(2.1) Lagrangian mechanics : systematic, multi-body dynamics

d

dt

✓
@L(q, q̇, u)

@q̇

◆
�

@L(q, q̇, u)

@q
= 0

where L(q, q̇, u) = 1
2 q̇

TM(q)q̇ � P (q) + qTu and g(q) = @P (q)
@q

(2.2) Hamiltonian mechanics : systematic, state-space description

q̇ =
@H(q, p, u)

@p

ṗ = �
@H(q, p, u)

@q

where H(q, p, u) = pT q̇ � L(q, q̇, u) and p = @L(q,q̇,u)
@q̇

= M(q)q̇
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(PID) 2.3 Lagrangian Control System

1. The kinetic energy of mechanical system is characterized by using Inertia matrix M(q). The
Lagrangian quantity is given by subtracting the potential energy from the kinetic energy plus
input work-done term:

L(q, q̇, u) =
1

2
q̇TM(q)q̇ � P (q) + qTu, with q 2 <n and u 2 <n (56)

2. Using Lagrangian mechanics

d

dt

✓
@L(q, q̇, u)

@q̇

◆
�

@L(q, q̇, u)

@q
= 0 )

d

dt
(M(q)q̇)�

⇢
1

2


@

@q

�
q̇TM(q)

 �
q̇ �

@P (q)

@q
+ u

�
= 0

we have the description of Lagrangian system:

M(q)q̈ +


Ṁ(q)�

1

2

@

@q

�
q̇TM(q)

 �
q̇ +

@P (q)

@q
� u = 0,

3. Here, if we define the Coriolis and centrifugal matrix and the gravitational torque/force,

C(q, q̇) , Ṁ(q)�
1

2

@

@q

�
q̇TM(q)

 
, g(q) , @P (q)

@q
u , ⌧

then we can get the Lagrangian system as following well-known equation:

) M(q)q̈ + C(q, q̇)q̇ + g(q) = ⌧ (57)
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4. (Example 2.1) Obtain the Lagrangian system of the pendulum dynamics?

X

Y

q

l

ττττ

v lq= &

cos( )l l q−

f mg=

• The Lagrangian quantity is

L(q, q̇, u) = K.E � P.E + qu =
1

2
m(lq̇)2 �mgl[1� cos(q))] + qu

• For the given Lagrangian function, we can get the following

@L

@q̇
= ml2q̇

@L

@q
= �mgl sin(q) + u

• Therefore, the Lagrangian equation of motion by lettering u = ⌧ is obtained as follows:

d

dt

✓
@L

@q̇

◆
�

@L

@q
= 0 ! ) ml2q̈ +mgl sin(q) = ⌧
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5. (Example 2.2) Obtain the Lagrangian system of two-link manipulator?

q1	

q2	

m1	

m2	

τ1	

τ2	

l1	

l2	

g	 q1	

q2	

l1	

l2	

v1 = l1 !q1
v2 = (l1 !q1)

2 + (l2 !q2 )
2 + 2(l1 !q1)(l2 !q2 )cos(q2 )

l1 !q1

l2 !q2

1 1(1 cos( ))l q−

1 1 2 1 2(1 cos( )) (1 cos( ))l q l q q− + − +

• The Lagrangian quantity is

K.E =
1

2
m1v

2
1 +

1

2
m2v

2
2 =

1

2
m1l

2
1q̇

2
1 +

1

2
m2(l

2
1q̇

2
1 + l22q̇

2
2 + 2l1l2q̇1q̇2c2)

P.E = m1gl1(1� c1) +m2g[l1(1� c1) + l2(1� c12)]

L(q, q̇, u) = K.E � P.E + q1u1 + q2u2

where c1 = cos q1, s1 = sin q1, c2 = cos q2, s2 = sin q2, c12 = cos(q1 + q2) and s12 = sin(q1 + q2).

• For the given Lagrangian function, we can get the following

@L

@q̇
=

"
@L

@q̇1
@L

@q̇2

#
=


m1l21q̇1 +m2l21q̇1 +m2l1l2q̇2c2

m2l22q̇2 +m2l1l2q̇1c2

�

d

dt

✓
@L

@q̇

◆
=


m1l21q̈1 +m2l21q̈1 +m2l1l2q̈2c2 �m2l1l2q̇2s2q̇2

m2l22q̈2 +m2l1l2q̈1c2 �m2l1l2q̇1s2q̇2

�

@L

@q
=

"
@L

@q1
@L

@q2

#
=


�m1gl1s1 �m2gl1s1 �m2gl2s12 + u1
�m2l1l2q̇1q̇2s2 �m2gl2s12 + u2

�
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• Therefore, the Lagrangian equation of motion d

dt

⇣
@L

@q̇

⌘
�

@L

@q
= 0 by letting u1 = ⌧1 and

u2 = ⌧2 is obtained as follows:

m1l21q̈1 +m2l21q̈1 +m2l1l2q̈2c2 �m2l1l2q̇2s2q̇2 +m1gl1s1 +m2gl1s1 +m2gl2s12 � u1

m2l22q̈2 +m2l1l2q̈1c2 �m2l1l2q̇1s2q̇2 +m2l1l2q̇1q̇2s2 +m2gl2s12 � u2

�
=


0
0

�


m1l21 +m2l21 m2l1l2c2
m2l1l2c2 m2l22

� 
q̈1
q̈2

�
+


�m2l1l2q̇22s2

�m2l1l2q̇1q̇2s2 +m2l1l2q̇1q̇2s2

�
+


m1gl1s1 +m2gl1s1 +m2gl2s12

m2gl2s12

�
=


⌧1
⌧2

�


(m1 +m2)l21 m2l1l2c2
m2l1l2c2 m2l22

� 
q̈1
q̈2

�
+


0 �m2l1l2s2q̇2
0 0

� 
q̇1
q̇2

�
+


(m1 +m2)gl1s1 +m2gl2s12

m2gl2s12

�
=


⌧1
⌧2

�

M(q)q̈ + C(q, q̇)q̇ + g(q) = ⌧

where

M(q) =


(m1 +m2)l21 m2l1l2c2
m2l1l2c2 m2l22

�
(58)

C(q, q̇) =


0 �m2l1l2s2q̇2
0 0

�
(59)

g(q) =


(m1 +m2)gl1s1 +m2gl2s12

m2gl2s12

�
(60)

[Notice] It is easily checked that Ṁ(q) = C(q, q̇) + CT (q, q̇) is always satisfied as shown in
the following:

Ṁ(q) =


0 �m2l1l2s2q̇2

�m2l1l2s2q̇2 0

�
=


0 �m2l1l2s2q̇2
0 0

�
+


0 0

�m2l1l2s2q̇2 0

�
= C(q, q̇) + CT (q, q̇)
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(PID) 2.4 Hamiltonian Control System (Dual form of Lagrangian)
1. The Hamiltonian quantity is derived from the generalized momentum p = M(q)q̇ as follows.

H(q, p, u) , pT q̇ � L(q, q̇, u) by using q̇ = M�1(q)p

= pTM�1(q)p�
1

2
pTM�1(q)p+ P (q)� qTu

=
1

2
pTM�1(q)p+ P (q)� qTu.

2. Let us express the Hamiltonian system (Hamiltonian control system) for a mechanical system
as simple as possible. The Hamiltonian system is calculated as follows:

q̇ =
@H(q, p, u)

@p
= M�1(q)p

ṗ = �
@H(q, p, u)

@q
= �

1

2


pT

@M�1(q)

@q1
| . . . |pT

@M�1(q)

@qn

�T
p�

@P (q)

@q
+ u.

By using @M
�1

@qi
= �M�1 @M

@qi
M�1 from d

dqi
(MM�1) = d

dqi
I = 0, above equation can be rewritten as

ṗ =
1

2


q̇T

@M

@q1
| . . . |q̇T

@M

@qn

�T
q̇ � g(q) + u =

1

2


@

@q

�
q̇TM(q)

 �
M�1(q)p� g(q) + u.
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3. If we introduce the Coriolis and centrifugal matrix to above equations, then the Hamiltonian
system is described with coordinates (q1, q2, . . . , qn, p1, p2, . . . , pn) and u = ⌧ as follows:

q̇ = M�1(q)p (61)
ṗ = CT (q, q̇)M�1(q)p� g(q) + ⌧. (62)

where

Ṁ(q) = C(q, q̇) + CT (q, q̇)

=

✓
Ṁ(q)�

1

2

@

@q

�
q̇TM(q)

 ◆
+ CT (q, q̇) ! CT (q, q̇) =

1

2

@

@q

�
q̇TM(q)
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(PID) Several Properties on Mechanics
1. M(q) = MT (q) > 0

2. �min(M)I M(q)  �max(M)I and �min(M)  kM(q)k  �max(M)

3. kC(q, q̇)k  c0kq̇k and kC(q, q̇)q̇k  c0kq̇k2 with c0 > 0

4. kg(q)k  g0 with g0 > 0

5. (Lemma 1) For Lagrangian system and Hamiltonian system, the following properties are al-
ways satisfied:

• Ṁ(q) = C(q, q̇) + CT (q, q̇).

• Ṁ(q)� 2C(q, q̇) is skew symmetric.

• Ṁ(q)� 2CT (q, q̇) is skew symmetric.

• (HW # 6) solve 4 problems 2.3, 2.4, 2.6, and 2.7
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(PID) 3. Optimization for Control
1. Pontryagin’s Minimum Principle

• Generalization of the calculus variations

• Lagrange multiplier method for constrained optimization

• Variational approach

2. Completion of Squares

• Heuristic approach

• Inverse method

3. Dynamic Programming

• Taylor series expansion

• Principle of optimality

• HJB equation

• HJI equation
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(PID) 3.1 Pontryagin’s Minimum Principle
1. (Pontryagin’s Minimum Principle) For given system and performance index to be optimized:

ẋ = f(x, u, t) J = lim
t!1


m(x(t), t) +

Z
t

0
g(x(⌧), u(⌧), ⌧)d⌧

�
(63)

let us define the Hamiltonian quantity with � termed the Lagrange multiplier

H(x, u,�, t) = g(x, u, t) + �Tf(x, u, t) (64)

and then if the minimizing control input is applied

H⇤(x,�, t) = min
u

H(x, u,�, t) (
@H

@u
= 0 and

@2H

@u2
> 0 (65)

then the controlled system follows the optimal trajectory as following form:

ẋ =
@H⇤(x,�, t)

@�
with the prescribed initial condition x(0) (66)

�̇ = �
@H⇤(x,�, t)

@x
with the terminal condition �(1) =

@m

@x
(x(1),1) (67)
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2. (Linear Version of Pontryagin’s Minimum Principle, LQR (linear quadratic regulator)) For
given linear system and performance index to be optimized:

ẋ = Ax+Bu J = lim
t!1


m(x(t), t) +

1

2

Z
t

0
(xTQx+ uTRu) d⌧

�
(68)

where R = RT > 0 and Q = QT
� 0, let us define the Hamiltonian quantity with � (Lagrange

multiplier)

H(x, u,�, t) =
1

2
(xTQx+ uTRu) + �T (Ax+Bu) (69)

and then if the minimizing control input is applied

H⇤(x,�, t) = min
u

H(x, u,�) (
@H

@u
= Ru+BT� = 0 and

@2H

@u2
= R > 0 (70)

= �TAx�
1

2
�TBR�1BT�+

1

2
xTQx ( u = �R�1BT� (71)

then the controlled system follows the optimal trajectory as following form:

ẋ =
@H⇤(x,�, t)

@�
= Ax� BR�1BT� (72)

�̇ = �
@H⇤(x,�, t)

@x
= �AT��Qx (73)

Above two equations can be collected to make Hamiltonian matrix as follows:

ẋ
�̇

�
=


A �BR�1BT

�Q �AT

� 
x
�

�
(74)

92



To solve the Hamiltonian matrix, the sweep method (� = Px with P = P T > 0) is utilized

�̇ = Ṗ x+ Pẋ (75)
�ATPx�Qx = Ṗ x+ P (Ax� BR�1BTPx) (76)

For any x 6= 0, the following matrix equation (called Riccati equation) should be solved

) Ṗ + PA+ ATP � PBR�1BTP +Q = 0 (77)

As a result, we can get the LQR controller for given Q and R as follows:

) u = �R�1BTPx ! � = Px

How to determine the diagonal terms of Q and R:

Qii =
1

maximum acceptable value of [x2
i
]

Rii =
1

maximum acceptable value of [u2
i
]

the Matlab command P = are(A,BR�1BT , Q) provides a numerical solution only when Ṗ = 0.
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3. (Example 3.1) For given scalar unstable system and the performance index,

ẋ = x+ u J = lim
t!1


V (x(t)) +

1

2

Z
t

0
x(⌧)2 + u(⌧)2 d⌧

�
,

obtain both the optimal controller and the closed-loop response with x(0) = 1 ?

• Hamiltonian quantity for a given system is

H(x, u,�) =
1

2
x2 +

1

2
u2 + �(x+ u)

• To find the optimal control input, let us differentiate the Hamiltonian quantity as follows:

@H

@u
= u+ � = 0 ! ) u = ��

@2H

@u2
= 1 > 0 ! the minimization is achieved when u = ��

• Thus the optimized Hamiltonian quantity is obtained as follow:

H⇤(x,�) =
1

2
x2 +

1

2
�2 + �(x� �)

• Hence, the optimal trajectories can be obtained by using the Pontryagin’s minimum prin-
ciple as following form:

ẋ =
@H⇤(x,�)

@�
= ��+ x

�̇ = �
@H⇤(x,�)

@x
= �x� �
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Here, we can get the Hamiltonian matrix

ẋ
�̇

�
=


1 �1
�1 �1

� 
x
�

�

• Let us solve the � by introducing the unknown positive constant p as follows:

� , px ) �̇ = pẋ ) � x� px = p(x� px)

Now we can get the following

p2 � 2p� 1 = 0 ! p = 1±
p

2

Therefore, the positive constant p can be determined as follow

p = 1 +
p

2 ) � = (1 +
p

2)x

• Finally, the optimal controller from u = �� is

) u = �(1 +
p

2)x

• The closed-loop equation can be obtained by applying the optimal controller

ẋ = x� (1 +
p

2)x = �
p

2x

To obtain the response of above differential equation, we take the Laplace transform

sX(s)� x(0) = �
p

2X(s) ! (s+
p

2)X(s) = x(0) = 1 ! X(s) =
1

s+
p
2
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Take an inverse Laplace transform to obtain the response, then

) x(t) = e�
p
2t for t � 0
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(Example) Obtain the optimal controller of

ẋ1
ẋ2

�
=


0 1
0 0

� 
x1
x2

�
+


0
1

�
u

for given performance index

J = lim
t!1


V (x(t)) +

1

2

Z
t

0
xT (⌧)Qx(⌧) + u(⌧)TRu(⌧) d⌧

�
,

with

Q =


100 0
0 0

�
� 0 and R = 1 > 0

The optimal control can be obtained after solving Riccati equation:

u = �R�1BTPx ATP + PA� PBR�1BTP +Q = 0

= �
⇥
p12 p22

⇤ x1
x2

� 
0 0
1 0

� 
p11 p12
p12 p22

�
+


p11 p12
p12 p22

� 
0 1
0 0

�
�


p11 p12
p12 p22

� 
0 0
0 1

� 
p11 p12
p12 p22

�
+


100 0
0 0

�
= 0


�p212 + 100 p11 � p12p22
p11 � p22p12 2p12 � p222

�
= 0

= �
⇥
10 2

p
5
⇤ x1

x2

�
p12 = 10 p22 = 2

p

5
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The closed-loop system is obtained as

ẋ = (A� BR�1BTP )x

=


0 1
�10 �2

p
5

�
x

The characteristic equation of closed-loop system becomes

det(sI � A+BR�1BTP ) = s(s+ 2
p

5) + 10

= s2 + 2
p

5s+ 10 = 0

! s1,2 = �
p

5± j
p

5
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4. (Example 3.2) Determine the dimensions (x > 0 and y > 0) of the largest rectangle which can
be inscribed in a semi-circle of radius a ?

x

y

a

Area to be maximized : g(x, y) = 2xy

Constraint equation : f(x, y) = x2 + y2 � a2 = 0

Hamiltonian function : H(x, y,�) = g(x, y) + �f(x, y)

• To solve the optimization with equality constraint equation, we firstly should obtain the
Hamiltonian function.

H(x, y,�) = g(x, y) + �f(x, y) = 2xy + �(x2 + y2 � a2)

• And then we should solve the following equations

@H

@x
= 2y + �(2x) = 0 ! � = �

y

x
@H

@y
= 2x+ �(2y) = 0 ! � = �

x

y

So, we can get the following relation :

) x = y from � = �
y

x
= �

x

y

• In other words, when x = y and � = �1, either minimum or maximum is achieved. And
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then we should confirm the definiteness of the following Hessian matrix
"

@
2
H

@x2
@

@y

�
@H

@x

�

@

@x

⇣
@H

@y

⌘
@
2
H

@y2

#
=


2� 2
2 2�

�
=


�2 2
2 �2

�
 0

• Since the Hessian matrix is negative semi-definite, the maximum is achieved when x = y.
From the constraint equation, we can get the dimensions about x and y as follows:

) x = y =
a
p
2

 x2 + y2 = a2
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