
(NC) 5 Passivity / 5.1 Memoryless Functions

1. (Passivity) It provides us with a useful tool for the analysis of nonlinear systems related to
Lyapunov stability.

2. (Memoryless Function) It is called memoryless function when the input u affects the output y
directly w/o dynamic relation.

y = h(t, u) (41)

3. Consider the resistor with the voltage u as input and the current y as output

• Power flow into the system: (scalar case) uy ) uTy (vector case)

• The system is passive if the inflow of power is nonnegative,

uy � 0 8 (u, y) ) uTy = uTh(t, u) � 0 8 (t, u) (42)

• For uTh(t, u) � 0, the memoryless function h(t, u) = Ku belongs to the sector K 2 [0,1].

• Especially the system is called lossless if uTy = 0

• Geometrically, it means that the u� y curve must lie in the first and third quadrants.
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4. (Definition 5.1) The system y = h(t, u) is

• passive if uTy � 0, 8 (u, y)

• lossless if uTy = 0, 8 (u, y)

• input strictly passive if uTy � uT'(u) > 0, 8 u 6= 0

• output strictly passive if uTy � yT⇢(y) > 0, 8 y 6= 0.

5. (Sector Condition) consider a scalar function y = h(t, u) satisfying the inequalities

↵u2  uh(t, u)  �u2 ) [h(t, u)� ↵u]u � 0 and [h(t, u)� �u]u  0

[h(t, u)� ↵u][h(t, u)� �u]u2  0 ) ) [h(t, u)� ↵u][h(t, u)� �u]  0 8 (t, u)

where we say that h(t, u) belongs to a sector [↵, �]. The following figure shows the sector [↵, �]

for � > 0 and different sign of ↵.

6. (Matrix-Vector Representation of Sector Condition) Taking

K1 = diag(↵1,↵2, · · · ,↵m) K2 = diag(�1, �2, · · · , �m)

the sector condition [K1, K2] in the matrix-vector form can be easily seen that

[h(t, u)� ↵u][h(t, u)� �u]  0 ) [h(t, u)�K1u]
T [h(t, u)�K2u]  0 8 (t, u) (43)
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7. (Transformation of Sector Condition) A function in the sector [K1, K2] can be transformed
into a function in the sector [0,1] by input feedforward followed by output feedback. Let
K = K2 �K1, then we have u2 = Ku = (K2 �K1)u = u1 + y1 and y1 = h(t, u)�K1u

u y y1 u2 u1 [h(t, u)�K1u]
T [h(t, u)�K2u]  0

yT1 [h(t, u)�K2u]  0

yT1 [y1 +K1u�K2u]  0

yT1 [y1 �Ku]  0

yT1 (�u1)  0

) uT1 y1 � 0 8 (u1, y1)

8. (Definition 5.2) A memoryless function h(t, u) belongs to the sector

• [K1, K2] with K = K2 �K1 = KT > 0, if [h(t, u)�K1u]T [h(t, u)�K2u]  0 8 (t, u)

• [0, K2] with K2 = KT

2 > 0, if hT (t, u)[h(t, u)�K2u]  0 8 (t, u)

• [K1,1], if uT [h(t, u)�K1u] � 0 8 (t, u)

• [0,1], if uTh(t, u) � 0 8 (t, u)
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(NC) 5.2 State Models

1. Let us extend the concept of passivity into the dynamical system represented by

ẋ = f(x, u) y = h(x, u) (44)

where f is locally Lipschitz, h is continuous, f(0, 0) = 0, and h(0, 0) = 0.

2. (Passivity 1) The system is passive if the energy absorbed by the system (the energy supplied
into the system) is greater than or equal to the change in the energy stored in the system over
any time period [0, t]; that is,

the supplied energy:
Z

t

0
u(s)y(s)ds � V (x(t))� V (x(0)) :change of the stored energy (45)

where V (x) is the energy stored in the system

3. (Passivity 2) The system is passive if the power flow into the system must be greater than or
equal to the rate of change of the energy stored in the system. Thus we have

u(t)y(t) � V̇ (x(t)) 8 t � 0 (46)

4. (Example 5.1) Consider the RLC circuit with linear inductor/capacitor and three nonlinear
resistors. Check the passivity of the state model?
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L
diL
dt

= u� v2 � vC = u� h2(iL)� vC

C
dvC
dt

= iL � i3 = iL � h3(vC)

y = iL + i1 = iL + h1(u)

• Let us denote the current x1 , iL through the inductor and the voltage x2 , vC across the
capacitor, then we have the state model as follows:

Lẋ1 = u� h2(x1)� x2 Cẋ2 = x1 � h3(x2) y = x1 + h1(u)

• Since the energy stored in the network is V (x) = 1
2Lx

2
1 +

1
2Cx22, we can get V̇

V̇ (x) = Lx1ẋ1 + Cx2ẋ2 = x1(u� h2(x1)� x2) + x2(x1 � h3(x2)) = x1u� x1h2(x1)� x2h3(x2)

= (x1 + h1(u))u� uh1(u)� x1h2(x1)� x2h3(x2) = uy � uh1(u)� x1h2(x1)� x2h3(x2)

) uy = V̇ + uh1(u) + x1h2(x1) + x2h3(x2)

a) If h1, h2, h3 are passive, then uy � V̇ and the system is passive by Eq. (46)
b) If h1 = h2 = h3 = 0, then uy = V̇ and the system is lossless b/c no dissipation energy
c) If h2, h3 are passive, then uy � V̇ + uh1(u). If uh1(u) > 0 8 u 6= 0, the system is input

strictly passive by Definition 5.1
d) If h1 = 0 and h3 is passive, then uy � V̇ + yh2(y). If yh2(y) > 0 8 y 6= 0, the system is

output strictly passive by Definition 5.1
e) If h1 is passive, then uy � V̇ +x1h2(x1)+x2h3(x2). If x1h2(x1)+x2h3(x2) > 0 8 (x1, x2) 6=

0, the system is state strictly passive, or simply strictly passive.
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5. (Definition 5.3) The system described by ẋ = f(x, u) and y = h(x, u) is passive if 9 a continu-
ously differentiable positive semidefinite function V (x) (called the storage function) 3

uTy � V̇ 8 (x, u) (47)

Moreover, it is

• lossless, if uTy = V̇

• input strictly passive, if uTy � V̇ + uT'(u) and uT'(u) > 0, 8u 6= 0

• output strictly passive, if uTy � V̇ + yT⇢(y) and yT⇢(y) > 0, 8y 6= 0

• strictly passive (or state strictly passive), if uTy � V̇ +  (x) and  (x) > 0, 8x 6= 0

6. (Example 5.2) Check the passivity of following systems ?
(where h 2 [0,1] and uh(u) > 0 8 u 6= 0 and yh(y) > 0 8 y 6= 0)

(a) ẋ = u (b) ẋ = u (c) ẋ = �h(x) + u

y = x y = x+ h(u) y = x

(a) Take the storage function V (x) = 1
2x

2, then we have V̇ = xẋ = xu = uy ) uy = V̇

Thus the system is lossless.

(b) Since V̇ = xẋ = xu = (y � h(u))u = uy � uh(u) ) uy = V̇ + uh(u),
thus the system is input strictly passive.

(c) Since V̇ = xẋ = x(�h(x) + u) = y(�h(y) + u) = uy � yh(y) ) uy = V̇ + yh(y),
thus the system is output strictly passive.
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7. (Example 5.3) Check the passivity of following systems ?
(where h 2 [0,1] and xh(x) > 0 8 x 6= 0)

(a) ẋ = u (b) aẋ = �x+ u

y = h(x) y = h(x)

(a) Take the storage function V (x) =
R
x

0 h(�)d�, then we have V̇ = h(x)ẋ = yu ) uy = V̇

Thus the system is lossless.

(b) Take the storage function V (x) = a
R
x

0 h(�)d�, then we have

V̇ = ah(x)ẋ = h(x)(�x+ u) = h(x)u� xh(x) = uy � xh(x) ) uy = V̇ + xh(x)

Thus the system is strictly passive.

8. (Example 5.4) Check the passivity of following system?
(where h 2 [↵1,1] and a > 0, b > 0,↵1 > 0)

ẋ1 = x2 ẋ2 = �h(x1)� ax2 + u y = bx2 + u

• Take the storage function V (x) as following form

V (x) = ↵

Z
x1

0
h(�)d� +

1

2
↵
⇥
x1 x2

⇤ p11 p12
p12 p22

� 
x1
x2

�
= ↵

Z
x1

0
h(�)d� +

1

2
↵(p11x

2
1 + 2p12x1x2 + p22x

2
2)

• Take time derivative of V (x)

V̇ = ↵h(x1)ẋ1 + ↵(p11x1ẋ1 + p12x2ẋ1 + p12x1ẋ2 + p22x2ẋ2)

= ↵h(x1)x2 + ↵(p11x1 + p12x2)x2 + ↵(p12x1 + p22x2)(�h(x1)� ax2 + u)
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• Take p22 = 1, p11 = ap12 and ↵ = b, then we have

V̇ = b(p12 � a)x22 � bp12x1h(x1) + (bp12x1 + bx2)u

= b(p12 � a)x22 � bp12x1h(x1) + (bp12x1 � u+ bx2 + u)u

= b(p12 � a)x22 � bp12x1h(x1) + (bp12x1 � u+ y)u

= uy � (u2 � bp12x1u+
b2p212x

2
1

4
) +

b2p212x
2
1

4
� bp12x1h(x1)� b(a� p12)x

2
2

= uy � (u�
bp12x1

2
)2 +

b2p212x
2
1

4
� bp12x1h(x1)� b(a� p12)x

2
2

 uy � bp12(x1h(x1)�
bp12x21

4
)� b(a� p12)x

2
2

• From the sector condition h 2 [↵1,1], if we use h(x1) � ↵1x1, then

V̇  uy � bp12(↵1x
2
1 �

bp12x21
4

)� b(a� p12)x
2
2

 uy � bp12(↵1 �
bp12
4

)x21 � b(a� p12)x
2
2

• Take p12 = ak with 0 < k < 1, then we have

uy � V̇ + abk(↵1 �
abk

4
)x21 + ab(1� k)x22

• If we choose 0 < k < min{1, 4↵1

ab
}, then the system is strictly passive
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9. (Example 5.5) Check the passivity of pendulum system? (where b � 0, c > 0)

ẋ1 = x2 ẋ2 = � sin x1 � bx2 + cu y = x2

• Take the storage function V (x) as potential plus kinetic energies

V (x) = ↵[(1� cos x1) +
1

2
x22] � 0 8 x

• Take time derivative of V (x)

V̇ = ↵[sin x1ẋ1 + x2ẋ2]

= ↵[x2 sin x1 + x2(� sin x1 � bx2 + cu)]

= �↵bx22 + ↵cx2u

• Take ↵ = 1
c
, then we have

V̇ = �
b

c
y2 + yu ) uy = V̇ +

b

c
y2

– when b = 0, the system is passive
– when b > 0, it is output strictly passive
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(NC) 5.3 Positive Real Transfer Functions (TF)

1. Linear version of the passive system?

2. (Definition 5.4) An m⇥m proper rational transfer function matrix G(s) is positive real if

1) all poles of G(s) are in Re[s]  0

2) for all real ! for which j! is not a pole of G(s), the matrix G(j!) +GT (�j!) � 0

3) any pure imaginary pole j! of G(s) is a simple pole and the residue matrix lims!j!(s �

j!)G(s) is positive semidefinite Hermitian

It is strictly positive real if G(s� ✏) is positive real for some ✏ > 0.

3. (Scalar Linear System) when m = 1,

G(j!) +GT (�j!) = 2Re[G(j!)] � 0 8 ! 2 [0,1)

• It means the polar plot (or Nyquist plot) lies in the closed right-half complex plane.

• This condition implies that the relative degree of the transfer function is zero or one b/c
the phase is in [�90�, 0�]

4. (Example 5.6) Determine whether the system is positive real or not

(a) G(s) =
1

s
(b) G(s) =

1

s+ a
(c) G(s) =

1

s2 + s+ 1

(a) 1) A pole is in Re[s]  0. 2) G(j!) + GT (�j!) = 2Re[G(j!)] = 0. 3) s = 0 is a simple pole
and its residue lims!j!(s� 0)G(s) = 1. By Definition 5.4, the system is positive real.
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(b) A pole is in Re[s]  0. 2) Re[G(j!)] = a

!2+a2
� 0. 3) s = �a is a simple pole and no pure

imaginary pole. 4) G(s� ✏) = 1
s+a�✏

is positive real for any ✏ 2 (0, a). By Definition 5.4, the
system is strictly positive real.

(c) It is not positive real b/c the relative degree is two.

5. (Lemms 5.1) Let G(s) be an m ⇥ m proper rational TF matrix, and suppose that det[G(s) +

GT (�s)] is not identically zero. Then G(s) is strictly positive real if and only if

1) G(s) is Hurwitz; that is, poles of all elements of G(s) are in Re[s] < 0

2) G(j!) +GT (�j!) > 0 8 ! 2 <,
3) either G(1)+GT (1) > 0 or G(1)+GT (1) � 0 and lim!!1 !2(m�q) det[G(j!)+GT (�j!)] > 0,

where q = rank[G(1) +GT (1)].

6. (Example 5.6’) Determine whether the system is strictly positive real or not

(a) G(s) =
1

s+ a
(b) G(s) =

1

s+ 1


s+ 1 1
�1 2s+ 1

�
(c) G(s) =


s+2
s+1

1
s+2

�
1

s+2
2

s+1

�

(a) 1) G(s) is Hurwitz with a > 0. 2) Re[G(j!)] = a

!2+a2
> 0. 3) G(1) = 0 and m = 1, q = 0,

lim!!1 !2
|Re[G(j!)]| = a!

2

!2+a2
= a > 0. By Lemma 5.1, the system is strictly positive real.

(b) 1) G(s) is Hurwitz. 2)

G(j!) +GT (�j!) =
1

j! + 1


j! + 1 1
�1 2j! + 1

�
+

1

�j! + 1


�j! + 1 �1

1 �2j! + 1

�

=
1

!2 + 1


!2 + 1 1� j!
�1 + j! 2!2 + 1 + j!

�
+

1

!2 + 1


!2 + 1 �1� j!
1 + j! 2!2 + 1� j!

�

=
2

!2 + 1


!2 + 1 �j!
j! 2!2 + 1

�
> 0
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3)

G(1) +GT (1) =


2 0
0 2

�
> 0

By Lemma 5.1, the system is strictly positive real.

(c) 1) G(s) is Hurwitz. 2)

G(j!) +GT (�j!) =

"
j!+2
j!+1

1
j!+2

�
1

j!+2
2

j!+1

#
+

"
�j!+2
�j!+1 �

1
�j!+2

1
�j!+2

2
�j!+1

#

=

"
2(2+!

2)
1+!2

�2j!
!2+4

2j!
!2+4

4
!2+1

#
> 0

3) We know that m = 2, q = 1, G(1) +GT (1) =


2 0
0 0

�
� 0 , and

lim
!!1

!2 det[G(j!) +GT (�j!)] = lim
!!1

!2

✓
8(2 + !2)

(1 + !2)2
�

4!2

(4 + !2)2

◆
= 4 > 0

By Lemma 5.1, the system is strictly positive real.

70



7. (Lemma 5.2) (Positive Real) Let G(s) = C(sI �A)�1B+D be an m⇥m TF matrix where (A,B)

is controllable and (A,C) is observable. Then G(s) is positive real if and only if 9 matrices
P = P T > 0, L, and W 3

PA+ ATP = �LLT (48)
PB = CT

� LTW (49)
W TW = D +DT (50)

8. (Lemma 5.3) (Kalman-Yakubovich-Popov) Let G(s) = C(sI�A)�1B+D be an m⇥m TF matrix
where (A,B) is controllable and (A,C) is observable. Then G(s) is strictly positive real if and
only if 9 matrices P = P T > 0, L, W , and a positive constant ✏ 3

PA+ ATP = �LLT
� ✏P (51)

PB = CT
� LTW (52)

W TW = D +DT (53)

(proof) Set µ = 1
2✏ and recall that G(s� µ) = C(sI � µI �A)�1B +D. G(s� µ) is positive real if

9 P satisfying

P (A+ µI) + (A+ µI)TP = �LTL

Hence G(s) is strictly positive real by Definition 5.4
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9. (Lemma 5.4) The linear time-invariant minimal realization is

ẋ = Ax+Bu and y = Cx+Du ) G(s) = C(sI � A)�1B +D (54)

• passive, if G(s) is positive real

• strictly passive, if G(s) is strictly positive real.

(proof) Use the storage function V (s) = 1
2x

TPx. In order to show

uTy � V̇ +  (x)

first

uTy � V̇ = uT (Cx+Du)� xTP (Ax+Bu)

= uTCx+
1

2
uT (D +DT )u�

1

2
xT (PA+ ATP )x� xTPBu

from Lemma 5.3,

uTy � V̇ = uT (BTP +W TL)x+
1

2
uTW TWu+

1

2
xTLTLx+

1

2
✏xTPx� xTPBu

=
1

2
xTLTLx+ uTW TLx+

1

2
uTW TWu+

1

2
✏xTPx

=
1

2
(Lx+Wu)T (Lx+Wu) +

1

2
✏xTPx

�
1

2
✏xTPx

• ✏ = 0, the system is passive by Lemma 5.2

• ✏ > 0, the system is strictly passive by Lemma 5.3
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(NC) 5.4 Connection with Stability

1. Passive system is stable?

2. Consider the passive system of the form

ẋ = f(x, u) y = h(x, u) (55)

where f is locally Lipschitz, h is continuous, f(0, 0) = 0 and h(0, 0) = 0.

3. (Lemma 5.5) If the system (55) is passive with V (x) > 0, then the origin of unforced system
ẋ = f(x, 0) is stable

4. To show the asymptotically stability of the origin of unforced system ẋ = f(x, 0), we need to
show that V̇ < 0 or apply the invariance principle:

V̇ = 0 when y = 0 ) y(t) = 0 ) x(t) = 0

Equivalently, no solution of ẋ = f(x, 0) can stay identically in S = {h(x, 0) = 0}, other than the
zero solution x(t) = 0.

5. As a matter of fact, above property can be interpreted as an observability condition. Recall
that for the linear system

ẋ = Ax y = Cx

observability is equivalent to

y(t) = CeAtx(0) = 0 ) x(0) = 0 ) x(t) = 0 zero-state observable
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6. (Definition 5.5) The system (55) is said to be zero-state observable if no solution of ẋ = f(x, 0)

can stay identically in S = {h(x, 0) = 0}, other than the zero solution x(t) = 0

7. (Lemma 5.6) Consider the system (55). The origin of ẋ = f(x, 0) is asymptotically stable if the
system is

• strictly passive or

• output strictly passive and zero-state observable

8. (Example 5.7) Check the stability of m-input and m-output system

ẋ = f(x) +G(x)u y = h(x)

satisfying

@V

@x
f(x)  �khT (x)h(x)

@V

@x
G(x) = hT (x) y(t) = 0 ) x(t) = 0

for some k > 0, where f and G are locally Lipschitz, h is continuous, f(0) = 0 and h(0) = 0.

• Take the time derivative of V (x)

V̇ =
@V

@x
(f(x) +G(x)u)  �khT (x)h(x) + hT (x)u = �kyTy + uTy

uTy � V̇ + kyTy

thus the system is output strictly passive by Definition 5.3

• In addition, since it is zero-state observable, then the origin of ẋ = f(x) is asymptotically
stable by Lemma 5.6
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9. (Example 5.8) Check the stability of following system

ẋ1 = x2 ẋ2 = �ax31 � kx2 + u y = x2

where a and k are positive constants.

• Take the time derivative of V (x) = 1
4ax

4
1 +

1
2x

2
2

V̇ = ax31ẋ1 + x2ẋ2 = ax31x2 + x2(�ax31 � kx2 + u) = �ky2 + uy

uy = V̇ + ky2

thus the system is output strictly passive by Definition 5.3

• When u = 0,

V̇ = 0 ) y(t) = 0 (x2(t) = 0) ) ẋ1 = 0 ẋ2 = 0 ) x1(t) = 0

since it is zero-state observable, then the origin of the unforced system is globally asymp-
totically stable by Lemma 5.6 b/c the domain can be extended into <

2 and V (x) ! 1 as
|x| ! 1

• (HW # 4) solve 5 problems 5.2, 5.7, 5.8, 5.9 and 5.13
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