
(NC) 2 Two-Dimensional Systems

1. Why two-dimensional system?

• mechanical system, electrical system, electromechanical system ...

2. Two-dimensional time-invariant systems occupy an important place in the study of nonlinear
systems b/c solutions can be visualized by curves in the plane.

ẋ1 = f1(x1, x2) ẋ2 = f2(x1, x2) (11)

3. Assume that f1 and f2 are locally Lipschitz over the domain D ⇢ <
2. Then the locus in the

x1 � x2 plane of the solution x = [x1, x2]T 2 <
2, 8 t � 0, is a curve that passes through the point

x0 (initial condition).

4. (Phase Portrait and Vector Field) The family of all trajectories is called the phase portrait of
(11). This x1 � x2 plane is called the phase plane. Using the vector notation, we rewrite (11)
as

ẋ = f(x)

where f(x) = [f1, f2]T . The f(x) is tangent to the trajectory at x and it is called a vector field
on the phase plane.
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5. (How to Draw a Vector Field) Consider

ẋ1 = f1(x1, x2) = 2x21 ẋ2 = f2(x1, x2) = x2

at x = (1, 1), the vector field is obtained as the line segment from x to x+ f(x) = (3, 2) b/c

x1 + f1(x1, x2) = x1 + 2x21 = 3 x2 + f2(x1, x2) = 2x2 = 2

6. (Vector Field Diagram) The vector field at every point in a gird covering the plane is referred
to as a vector field diagram, for example, draw a vector field diagram using the matlab

(1)ẋ1 = x2 (2)ẋ1 = x2 (3)ẋ1 = x2

ẋ2 = � sin(x1) ẋ2 = � sin(x1)� x2 ẋ2 = � sin(x1) + x2

% For visualization of vector field diagram
[x1, x2] = meshgrid(-2:0.5:2, -2:0.5:2);
x1dot = x2; x2dot = -sin(x1);
quiver(x1,x2,x1dot,x2dot)
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(NC) 2.1 Qualitative Behavior of Linear Systems (Diagonalization)

1. Consider the two-dimensional linear time-invariant system

ẋ = Ax where x 2 <
2 and A 2 <

2⇥2 (12)

2. (Eigenvalue Decomposition) Let us obtain the eigenvalue decomposition of A in either real or
complex number domain

Ami = �imi ! AM = M⇤ ! A = M⇤M�1
$ ⇤ = M�1AM =


�1 0
0 �2

�

for i = 1, 2, where �1,�2 2 < or �1,2 = ↵± j� 2 C

3. (Example) Find the eigenvalue decomposition of the following matrix:

A =


1 2
�2 1

�

a) Let us find two eigenvalues:

det(A� �I) =

����
1� � 2
�2 1� �

���� = (1� �)2 + 4 = 0

) �1 = 1 + 2j and �2 = 1� 2j

b) First eigenvector corresponding to �1 = 1+2j is located on the null space N(A� (1+2j)I).

(A� �1I)m1 = 0 !


�2j 2 | 0
�2 �2j | 0

�
!


j �1 | 0
0 0 | 0

�
) m1 =


1
j

�
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c) Second eigenvector corresponding to �2 = 1�2j is located on the null space N(A�(1�2j)I).

(A� �2I)m2 = 0 !


2j 2 | 0
�2 2j | 0

�
!


j 1 | 0
0 0 | 0

�
) m2 =


1
�j

�

d) Eigenvalue decomposition using M = [m1;m2] will be

) A = M⇤M�1
$


1 2
�2 1

�
=


1 1
j �j

� 
1 + 2j 0

0 1� 2j

� 
1 1
j �j

��1

4. The change of coordinates z = M�1x transforms the system into two decoupled scalar (one-
dimensional) differential equations:

ẋ = Ax = M⇤M�1x ! M�1ẋ = ⇤M�1x ! ż = ⇤z ! ż1 = �1z1 ż2 = �1z2 (13)

with initial conditions z10 = z1(0) and z20 = z2(0), we have solutions:

dz1
z1

= �1 dt
dz2
z2

= �2 dt

Z
z1(t)

z1(0)

dz1
z1

=

Z
t

0
�1 dt

Z
z2(t)

z2(0)

dz2
z2

=

Z
t

0
�2 dt

ln z1(t)� ln z1(0) = �1 t ln z2(t)� ln z2(0) = �2 t

ln
z1(t)

z1(0)
= �1 t ln

z2(t)

z2(0)
= �2 t

z1(t)

z1(0)
= e�1t

z2(t)

z2(0)
= e�2t

) z1(t) = z10e
�1t z2(t) = z20e

�2t

20



(NC) 2.1 (Case 1. Real Eigenvalues)

1. For given two solutions, eliminating t between z1(t) = z10e�1t and z2(t) = z20e�2t, we obtain

t =
1

�1
ln

z1(t)

z10
! z2(t) = z20e

�2
�1

ln z1(t)
z10 ! z2(t) = z20e

ln
⇣

z1(t)
z10

⌘�2
�1

! z2 =

0

@ z20

z
�2
�1
10

1

A z
�2
�1
1 ! z2 = cz

�2
�1
1

2. (Stable Node) Let �2 < �1 < 0

• e�2t ! 0 faster than e�1t, as t ! 1.

•
�2

�1
> 1, e.g., if �2

�1
= 2, then the curve of z2 = cz21 approaches to 0 as t ! 1. [see figure 2.3]

• The equilibrium point z = 0, i.e., x = 0 is called stable node

3. (Unstable Node) Let �2 > �1 > 0

• e�2t ! 1 faster than e�1t, as t ! 1.

• The figure (phase portrait) is the exactly same with the figure of �2 < �1 < 0, except the
trajectory directions reversed

• The equilibrium point z = 0, i.e., x = 0 is called unstable node

4. (Saddle) Let �2 < 0 < �1

• e�2t ! 0 but e�1t ! 1, as t ! 1.

•
�2

�1
< 0, e.g., if �2

�1
= �1, then we have the curve of z2 = cz�1

1 [see figure 2.5]

• The equilibrium point z = 0, i.e., x = 0 is called saddle
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% For visualization of phase portrait for stable node
lambda1 = -1; lambda2 = -2;
f = @(t,z) [lambda1*z(1); lambda2*z(2)];
for z10 = [-2 -1 0 1 2]

for z20 = [-2 2]
[ts,ys] = ode45(f,[0,50],[z10;z20]);
axis([-4 4 -4 4])
plot(ys(:,1),ys(:,2)); hold on
plot(ys(1,1),ys(1,2),’bo’); hold on % starting point denoted by circle
plot(ys(end,1),ys(end,2),’ks’) % ending point denoted by square

end
end

stable node unstable node saddle
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(NC) 2.1 (Case 2. Complex Eigenvalues)

1. If �1,2 = ↵± j� 2 C with ↵, � 2 < are applied to the solution, we have

z1(t) = z10e
�1t = z10e

(↵+j�)t = z10e
↵tej�t = z10e

↵t(cos �t+ j sin �t)

z2(t) = z20e
�2t = z20e

(↵�j�)t = z20e
↵te�j�t = z20e

↵t(cos �t� j sin �t)

thanks to Euler’s Theorem ej✓ = cos ✓ + j sin ✓

2. Depending on the value of ↵, the trajectory will take one of the three forms

3. (Stable Focus) When ↵ < 0, the spiral converges to the origin. The equilibrium point is a
stable focus [see figure 2.6(a)]

4. (Unstable Focus) When ↵ > 0, it diverges away from the origin. The equilibrium point is an
unstable focus [see figure 2.6(b)]

5. (Center) When ↵ = 0, the trajectory is a circle of initial radius r0. The equilibrium point is a
center. [see figure 2.6(c)]. The system is vulnerable to perturbation when system matrix has
eigenvalues on imaginary axis. (it is not robust if the equilibrium is a center)

6. (Hyperbolic Equilibrium) The equilibrium point is called hyperbolic if A has no eigenvalue
with zero real part.
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(NC) 2.2 Qualitative Behavior Near Equilibrium Points

1. Qualitative behavior of a nonlinear system near an equilibrium point can be determined via
linearization w.r.t. that point

2. (Taylor Series Expansion) Let x0 = [x10, x20]T be an equilibrium point and f1 and f2 are contin-
uously differentiable. Expanding f1 and f2 into their Taylor series about x0, we have

ẋ1 = f1(x10, x20) + a11(x1 � x10) + a12(x2 � x20) +H.O.T. (14)
ẋ2 = f2(x10, x20) + a21(x1 � x10) + a22(x2 � x20) +H.O.T. (15)

where

• f1(x10, x20) = f2(x10, x20) = 0

• a11 =
@f1

@x1

���
x=x0

, a12 = @f1

@x2

���
x=x0

, a21 = @f2

@x1

���
x=x0

and a22 =
@f2

@x2

���
x=x0

3. (Linearized System at x = x0) Let us introduce new definitions y1 = x1 � x10 and y2 = x2 � x20.
If we restrict attention to a sufficiently small neighborhood of the equilibrium point such that
the higher-order terms (H.O.T) are negligible, then we have

ẏ1 = a11y1 + a12y2 (16)
ẏ2 = a21y2 + a22y2 (17)

Rewriting the equation in a vector form gives ẏ = Ay, where A = @f

@x

���
x=x0

is the Jacobian matrix
of f(x) evaluated at x = x0.
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4. It is true that if the origin of the linearized state equation is a stable (or unstable) node with
distinct eigenvalues, saddle, a stable (or unstable) focus, then in a small neighborhood of the
equilibrium point, the trajectories of the nonlinear state equation will behave like a stable (or
unstable) node, saddle, a stable (or unstable) focus. [by Theorem 3.2]

5. If the origin of the linearized state equation is a center equilibrium, we cannot say that the
equilibrium point of the nonlinear system is a center b/c it is vulnerable to the small pertur-
bation. We should check it using nonlinear analysis

6. (Example 2.1) Find the properties of the origin of linearized system and the equilibrium point
of nonlinear system ?

ẋ1 = �x2 � µx1(x
2
1 + x22) ẋ2 = x1 � µx2(x

2
1 + x22) (18)

• equilibrium point: x = 0

• linearized state equation: ẋ = Ax where A =


0 �1
1 0

�

• origin of the linearized system is a center equilibrium b/c two eigenvalues are ±j

• in the polar coordinates, x1 = r cos ✓, x2 = r sin ✓, (ẋ1 = ṙ cos ✓ � r✓̇ sin ✓)

ṙ = �µr3 ✓̇ = 1 (19)

• trajectories of the nonlinear system show
– stable focus when µ > 0

– unstable focus when µ < 0.

7. This example shows that the qualitative behavior describing a center in the linearized state
equation is not preserved in the nonlinear state equation.
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(NC) 2.3 Multiple Equilibria

1. The linear system ẋ = Ax has

• an isolated equilibrium point at x = 0, if det(A) 6= 0

• a continuum of equilibrium points located on the null space of A b/c Ax = 0, if det(A) = 0.

2. A nonlinear system can have multiple isolated equilibrium points.

3. (Example 2.2) Find the equilibrium points and their property?

ẋ1 = 0.5x2 � 0.5h(x1) ẋ2 = �0.2x1 � 0.3x2 + 0.24 (20)

where h(x1) = 17.76x1 � 103.79x21 + 229.62x31 � 226.31x41 + 83.72x51

• Equilibrium points are obtained from the intersection of x2 = h(x1) and x2 = �
2
3x1 + 0.8

• Using matlab roots(p) with p = [83.72,�226.31, 229.62,�103.79, (17.76 + 2/3),�0.8], we can
get 3 real roots and 2 complex roots. If we consider 3 real roots, then we have 3 equilib-
rium points as follows:

Q1 = (0.0626, 0.7583) Q2 = (0.2854, 0.6097) Q3 = (0.8844, 0.2104)

• Since Jacobian matrix of f(x) is given by

A =
@f

@x
=


�0.5(17.76� 207.58x1 + 688.86x21 � 905.24x31 + 418.6x41) 0.5

�0.2 �0.3

�����
x=Q
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we have 3 system matrices evaluated at Q1, Q2, and Q3

A1 =


�3.6247 0.5000
�0.2000 �0.3000

�
�1 = �3.5943 and �2 = �0.3304 Q1 is a stable node

A2 =


1.8201 0.5000
�0.2000 �0.3000

�
�1 = 1.7718 and �2 = �0.2517 Q2 is a saddle

A3 =


�1.4364 0.5000
�0.2000 �0.3000

�
�1 = �1.3402 and �2 = �0.3961 Q3 is a stable node

4. For visualization of phase portrait of Eq. (20), use the MATLAB

% For visualization of phase portrait
f = @(t,x) [0.5*x(2) - 0.5*(17.76*x(1) -103.79*x(1)ˆ2+229.62*x(1)ˆ3 ...

-226.31*x(1)ˆ4+83.72*x(1)ˆ5); -0.2*x(1)-0.3*x(2)+0.24];
for x10 = [-0.4 0.2 0.4 0.8 1.6]

for x20 = [-0.4 -0.3 0.2 0.8 1 1.2 1.6]
[ts,ys] = ode45(f,[0,50],[x10;x20]);
plot(ys(:,1),ys(:,2)); hold on
plot(ys(1,1),ys(1,2),’bo’); hold on % starting points
plot(ys(end,1),ys(end,2),’ks’) % ending points

end
end
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5. (Example 2.3) Find the equilibrium points and their property?

ẋ1 = x2 ẋ2 = � sin x1 � 0.3x2 (21)

• Equilibrium points are obtained as (n⇡, 0) from sin x1 = 0. Consider

Q1 = (0, 0) Q2 = (⇡, 0)

• Since Jacobian matrix of f(x) is given by

A =
@f

@x
=


0 1

� cos x1 �0.3

�����
x=Q
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we have 2 system matrices evaluated at Q1 and Q2

A1 =


0 1
�1 �0.3

�
�1or2 = �0.15± j0.9887 Q1 is a stable focus

A2 =


0 1
1 �0.3

�
�1 = �1.1612 and �2 = 0.8612 Q2 is a saddle

6. For visualization of phase portrait of Eq. (21), use the MATLAB

% For visualization of phase portrait
g = @(t,x) [x(2); -sin(x(1)) - 0.3*x(2) ];
for x10 = [2 pi pi+0.01 6 8]

for x20 = [-3 -2 -1 -0.01 0.01 1 2 3 ]
[ts,ys] = ode45(g,[0,50],[x10;x20]);
plot(ys(:,1),ys(:,2)); hold on
plot(ys(1,1),ys(1,2),’bo’); hold on % starting points
plot(ys(end,1),ys(end,2),’ks’) % ending points

end
end
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(NC) 2.4 Limit Cycles

1. Oscillation is one of the most important phenomena that occur in dynamical systems.

2. A system oscillates when it has a nontrivial periodic solution

x(t+ T ) = x(t), 8 t � 0 (22)

3. The image of a periodic solution in the phase portrait is a closed trajectory, periodic orbit, or
closed orbit.

4. Linear oscillator

• it is not structurally stable

• the amplitude of oscillation is dependent on the initial conditions.

5. Nonlinear oscillator

• it is structurally stable

• the amplitude of oscillation is independent on the initial conditions.
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6. (Example 2.4) Draw the phase portraits when ✏ = 0.2, 1.0, 5.0

ẋ1 = x2 ẋ2 = �x1 + ✏(1� x21)x2 (23)

• Van der Pol oscillator, it has only one isolated closed orbit.

• When ✏ = 0.2, the closed orbit is close to a circle of radius 2.

• When ✏ = 1.0, the circular shape of the closed orbit is distorted
• When ✏ = 5.0, the closed orbit is severely distorted.
epsilon = 0.2; v = @(t,x) [x(2); -x(1) + epsilon*(1-x(1)ˆ2)*x(2) ];
for x10 = [-4 0.1 4]

for x20 = [-3 0.1 3]
[ts,ys] = ode45(v,[0,50],[x10;x20]);
plot(ys(:,1),ys(:,2)); hold on
plot(ys(1,1),ys(1,2),’bo’); hold on % starting points
plot(ys(end,1),ys(end,2),’ks’) % ending points

end
end
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7. Like Van der Pol oscillator, if there is only one isolated closed orbit, it is called a limit cycle.
Especially, since all the trajectories approach to it, then it is referred to as a stable limit cycle.

8. If all the trajectories close to limit cycle move away as time progress, it is called unstable limit
cycle. Example of unstable limit cycle

ẋ1 = �x2 ẋ2 = x1 � ✏(1� x21)x2

epsilon = 0.2; v = @(t,x) [-x(2); x(1) - epsilon*(1-x(1)ˆ2)*x(2) ];
for x10 = [-2 0 2]

for x20 = [-3 0 3]
[ts,ys] = ode45(v,[0,50],[x10;x20]);
axis([-4 4 -4 4])
plot(ys(:,1),ys(:,2)); hold on
plot(ys(1,1),ys(1,2),’bo’); hold on % starting point
plot(ys(end,1),ys(end,2),’ks’) % ending point

end
end

• (HW # 2) solve 5 problems 2.1, 2.2, 2.4, 2.7. and 2.10.
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