(NC) 2 Two-Dimensional Systems

1. Why two-dimensional system?
e mechanical system, electrical system, electromechanical system ...

2. Two-dimensional time-invariant systems occupy an important place in the study of nonlinear
systems b/c solutions can be visualized by curves in the plane.

&1 = fi(x, 22) Ty = fo(z1, 22) (11)

3. Assume that f; and f> are locally Lipschitz over the domain D C R?. Then the locus in the
71 — T plane of the solution z = [z, 75]T € R?, V¢t > 0, is a curve that passes through the point
zo (initial condition).

4. (Phase Portrait and Vector Field) The family of all trajectories is called the phase portrait of
(11). This z; — 2, plane is called the phase plane. Using the vector notation, we rewrite
as

&= f(z)

where f(z) = [f1, f2]'. The f(z) is tangent to the trajectory at x and it is called a vector field
on the phase plane.
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5. (How to Draw a Vector Field) Consider

i1 = fi(z1, 33) = 227 Ty = fo(21,72) = T2
at z = (1,1), the vector field is obtained as the line segment from x to = + f(x) = (3,2) b/c
w1+ fi(wn, w2) = w1 + 227 = 3 Ty + fo(z1,29) = 229 = 2

6. (Vector Field Diagram) The vector field at every point in a gird covering the plane is referred
to as a vector field diagram, for example, draw a vector field diagram using the matlab

(1)ZL'1 = T2 (2)$1 = X2 (3)[13’1 = X9

T9 = —sin(z) To = —sin(zy) — X9 To = —sin(zy) + a2

% For visualization of vector field diagram
[x1, x2] = meshgrid(-2:0.5:2, -2:0.5:2);
x1ldot = x2; x2dot = —-sin(x1l);

quiver (x1,x2,x1dot, x2dot)
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(NC) 2.1 Qualitative Behavior of Linear Systems (Diagonalization)

1. Consider the two-dimensional linear time-invariant system

i = Ax where z € R and A € R>*? (12)

2. (Eigenvalue Decomposition) Let us obtain the eigenvalue decomposition of A in either real or
complex number domain

Am; = Ami — AM=MA — A=MAM"' & A:MlAM:[)(‘)l f]
2

fori =1,2, where A\, \s e Ror \js =ax;j5cC

3. (Example) Find the eigenvalue decomposition of the following matrix:

1 2
=15 7]
a) Let us find two eigenvalues:

=(1-XN?+4=0

det(A—)\I):‘l_)\ 2 ‘

-2 1-=A
)\1:1+2j and )\2:1—2]

b) First eigenvector corresponding to A\; = 1+ 25 is located on the null space N(A— (1+25)I).

aosimea o [F 41 B o]

—2 =25 | 0
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c) Second eigenvector corresponding to A\, = 1—2j is located on the null space N(A—(1—-2j)1).

(A — )\Ql)mg =0

2j 2
—2 2j

0

d) Eigenvalue decomposition using M = [mq;ms]| will be

A= MAM!

.

17 1+ 25

=0

j11]0
0010

1

e [—j]
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0
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4. The change of coordinates z = M 'z transforms the system into two decoupled scalar (one-

dimensional) differential equations:
= Ar = MAM 'z

with initial conditions 21y = 2;(0) and 2y = 22(0), we have solutions:

— M l'i=AM'z
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— z=ANz — Z"l = /\121 22 = )\122 (13)
d
2\, dt
<2
Zg(t) d t
/ @z / Ay di
2(0)  ~2 0
In 22<t) —In ZQ(O) == )\2 t
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(NC) 2.1 (Case 1. Real Eigenvalues)

1. For given two solutions, eliminating t between z(t) = z10e™ and 2,(t) = 20e*?!, we obtain

A2

2920
A2

AL
210

A M

t Ag 1 21 (1) z1(8) ) A1
Zl( ) — Zg(t) = 2’206’\? In 2110 — Zg(t) = 2’206111( leo) ' — Z9 =

1
t=—1In
A1 210

2. (Stable Node) Let \s < A\{ <0

o ¢! — () faster than eV, as t — oo.
o i—f > 1,eg.,if i—f = 2, then the curve of 2, = cz? approaches to 0 as t — oo. [see figure 2.3]

e The equilibrium point z = 0, i.e., z = 0 is called stable node
3. (Unstable Node) Let Ay > A1 >0

o ™! 5 o faster than eM!, as t — .

e The figure (phase portrait) is the exactly same with the figure of \» < \; < 0, except the
trajectory directions reversed

e The equilibrium point z = 0, i.e., z = 0 is called unstable node

4. (Saddle) Let \» < 0 < )\

o Mt 5 (but e — o0, ast — .
o i—‘f <0,eg.,if i—f = —1, then we have the curve of z, = cz; ' [see figure 2.5]

e The equilibrium point z = 0, i.e., z = 0 is called saddle

21



22

For visualization of phase portrait for stable node

lambdal = -1; lambda2 = -2;
f = @(t,z) [lambdal*xz (1l); lambda2xz(2)];
for z10 = [-2 -1 0 1 2]
for z20 = [-2 2]
[ts,ys] = oded45(£f,[0,50],[z10;z201]);
axis([-4 4 -4 4])
plot (ys(:,1),ys(:,2)); hold on
plot (ys(1,1),ys(1,2),"bo’); hold on %
plot(ys(end 1),ys(end,2),’ks’) %
end
end
lambdal = -1 and lambda2 = -2 4 I?mbda1 =1and lambda2 = 2
Q ] 2 © \\b ° é o

stable node

z2
o

unstable node
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starting point denoted by circle
ending point denoted by sqguare

lambdal = 1 and lambda2 = -1

saddle




(NC) 2.1 (Case 2. Complex Eigenvalues)

1. If Ay = a £ j5 € C with a, 3 € R are applied to the solution, we have

21(t) = z10eMt = 21060 = 4 0eeIPt = z10€™ (cos Bt + j sin t)

29(t) = 29062 = 290 @It = opete It = z90€™ (cos Bt — j sin Bt)
thanks to Euler’s Theorem e/’ = cosf + j sin 0
2. Depending on the value of o, the trajectory will take one of the three forms

3. (Stable Focus) When o < 0, the spiral converges to the origin. The equilibrium point is a
stable focus [see figure 2.6(a)]

4. (Unstable Focus) When o > 0, it diverges away from the origin. The equilibrium point is an
unstable focus [see figure 2.6(b)]

5. (Center) When o = 0, the trajectory is a circle of initial radius ry. The equilibrium point is a
center. [see figure 2.6(c)]. The system is vulnerable to perturbation when system matrix has
eigenvalues on imaginary axis. (it is not robust if the equilibrium is a center)

6. (Hyperbolic Equilibrium) The equilibrium point is called hyperbolic if A has no eigenvalue
with zero real part.
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(NC) 2.2 Qualitative Behavior Near Equilibrium Points

1. Qualitative behavior of a nonlinear system near an equilibrium point can be determined via
linearization w.r.t. that point

2. (Taylor Series Expansion) Let z( = |21, 790]” be an equilibrium point and f; and f, are contin-
uously differentiable. Expanding f; and f; into their Taylor series about =y, we have

&1 = fi(z10,220) + an(x1 — x10) + a12(v2 — 220) + HO.T. (14)
Ty = fo(T10, T20) + ao1(x1 — T10) + az(v2 — x2) + HO.T. (15)

where

o fi(w10,%20) = fa(10,720) = 0

d d d
°CL11:3—£ ,a12:3'—£; ,a21:5'_£ and agy =

=X IT=X =X

Ofs

0xa _
IT=X

3. (Linearized System at x = z() Let us introduce new definitions y; = x; — x19 and y» = x5 — x99.
If we restrict attention to a sufficiently small neighborhood of the equilibrium point such that
the higher-order terms (H.O.T) are negligible, then we have

U1 = aniyr + a2y (16)
Y2 = a21Y2 + a2y (17)

Rewriting the equation in a vector form gives iy = Ay, where A = % is the Jacobian matrix

:IO

of f(x) evaluated at © = xy.
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4. It is true that if the origin of the linearized state equation is a stable (or unstable) node with
distinct eigenvalues, saddle, a stable (or unstable) focus, then in a small neighborhood of the
equilibrium point, the trajectories of the nonlinear state equation will behave like a stable (or
unstable) node, saddle, a stable (or unstable) focus. [by Theorem 3.2]

5. If the origin of the linearized state equation is a center equilibrium, we cannot say that the
equilibrium point of the nonlinear system is a center b/c it is vulnerable to the small pertur-
bation. We should check it using nonlinear analysis

6. (Example 2.1) Find the properties of the origin of linearized system and the equilibrium point
of nonlinear system ?

Tl = —To9 — qul(x% + x%) To = T — /m;g(acf + $%) (18)

equilibrium point: x = 0

linearized state equation: & = Axr where A = [(1) _01]

origin of the linearized system is a center equilibrium b/c two eigenvalues are +;

in the polar coordinates, z; = r cosf, x9 = rsin 6, (&, = 7 cos 0 — rf sin 6)
= —pr’ 0=1 (19)

trajectories of the nonlinear system show

— stable focus when i > 0
- unstable focus when ;1 < 0.

7. This example shows that the qualitative behavior describing a center in the linearized state
equation is not preserved in the nonlinear state equation.
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(NC) 2.3 Multiple Equilibria

1. The linear system & = Ax has

e an isolated equilibrium point at x = 0, if det(A) # 0

e a continuum of equilibrium points located on the null space of A b/c Az =0, if det(A) = 0.
2. A nonlinear system can have multiple isolated equilibrium points.
3. (Example 2.2) Find the equilibrium points and their property?
i1 = 0.5z9 — 0.5h(21) iy = —0.221 — 0.3z9 + 0.24 (20)
where h(z1) = 17.762; — 103.792% + 229.6227 — 226.312] + 83.72x7

e Equilibrium points are obtained from the intersection of 25 = h(x1) and =, = —%:1:1 +0.8

e Using matlab roots(p) with p = [83.72, —226.31,229.62, —103.79, (17.76 4+ 2/3), —0.8], we can
get 3 real roots and 2 complex roots. If we consider 3 real roots, then we have 3 equilib-
rium points as follows:

Q1 = (0.0626,0.7583) @, = (0.2854,0.6097) Q3 = (0.8844,0.2104)

e Since Jacobian matrix of f(x) is given by

A _ OF _ [~0.5(17.76 — 207.581, + 688.8627 — 905.2421 + 418.621) 0.5 ]

 Ox —0.2 —0.3

r=Q
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we have 3 system matrices evaluated at )1, (), and ()3

[—3.6247  0.5000 |

A = |_0.2000 —0.3000 A = —3.5943 and Ay = —0.3304 ()1 1s a stable node

[ 1.8201  0.5000 |
|—0.2000 —0.3000

[—1.4364  0.5000 |
|—0.2000 —0.3000

A = 1.7718 and \y = —0.2517 ()- 1s a saddle

A = —1.3402 and \y = —0.3961 ()3 is a stable node

4. For visualization of phase portrait of Eq. (20), use the MATLAB

% For wvisualization of phase portrait

f = Q@(t,x) [0.5xx(2) — 0.5%(17.76*x (1) —-103.79xx (1) "2+229.62+x(1)"3 ...
—226.31xx (1) "4+83.72xx (1) "5); —-0.2xx(1)-0.3*x(2)+0.24];
for x10 = [-0.4 0.2 0.4 0.8 1.6]
for x20 = [-0.4 -0.3 0.2 0.8 1 1.2 1.6]
[ts,ys] = oded5(£f, [0,50], [x10;x20]);
plot (ys(:,1), 2)); hold on

s (:

plot(ys(l 1),ys( 2),'bo’); hold on % starting points
plot (ys (end, 1),ys(end,2),’ks') % ending points

end

end
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5. (Example 2.3) Find the equilibrium points and their property?
T1 = T T9 = —sinxy — 0.329 (21)
e Equilibrium points are obtained as (n,0) from sinz; = 0. Consider
Q1=(0,0) Q2= (m,0)

e Since Jacobian matrix of f(x) is given by

el

- Ox —cosz; —0.3

r=Q
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we have 2 system matrices evaluated at (); and Q-

A = _01 _(1) 3] Aoro = —0.15 £ j0.9887 ()1 1s a stable focus
0 1 .
Ay = L —0 3] A = —1.1612 and M\ = 0.8612 ()- 1s a saddle

6. For visualization of phase portrait of Eq. (21), use the MATLAB

% For visualization of phase portrait

g = Q@(t,x) [x(2); —-sin(x(1l)) - 0.3xx(2) 1;
for x10 = [2 pi pi+t0.01 6 8]
for x20 = [-3 -2 -1 -0.01 0.01 1 2 3 ]

[ts,ys] = ode45(qg, [0,50], [x10;x201);

plot (ys(:,1),ys(:,2)); hold on

plot(ys(1,1),ys(1l,2),"bo’"); hold on % starting points
plot (ys(end,1l),ys(end,2),’ks’) % ending points

end

end

29



(NC) 2.4 Limit Cycles

1. Oscillation is one of the most important phenomena that occur in dynamical systems.

2. A system oscillates when it has a nontrivial periodic solution

r(t+T)==x(t), Vt>0 (22)

3. The image of a periodic solution in the phase portrait is a closed trajectory, periodic orbit, or
closed orbit.

4. Linear oscillator

e it is not structurally stable

e the amplitude of oscillation is dependent on the initial conditions.
5. Nonlinear oscillator

e it is structurally stable

e the amplitude of oscillation is independent on the initial conditions.
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6. (Example 2.4) Draw the phase portraits when ¢ = 0.2,1.0,5.0

(23)

T = X9 Ty = —x1 + 6(1 — ZC%)Q?Q
e Van der Pol oscillator, it has only one isolated closed orbit.
e When ¢ = 0.2, the closed orbit is close to a circle of radius 2.
e When ¢ = 1.0, the circular shape of the closed orbit is distorted
e When ¢ = 5.0, the closed orbit is severely distorted.
epsilon = 0.2; v = @(t,x) [x(2); —-x(1) + epsilon*x(1l-x(1)"2)*x(2) ];
for x10 = [-4 0.1 4]
for x20 = [-3 0.1 3]
[ts,ys] = oded5 (v, [0,50], [x10;x20]);
plot (ys(:,1),ys(:,2)); hold on
plot(ys(1l,1),ys(1l,2),"bo’"); hold on % starting points
plot (ys(end,1l),ys(end,2),’ks’) % ending points
end
end
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7. Like Van der Pol oscillator, if there is only one isolated closed orbit, it is called a limit cycle.
Especially, since all the trajectories approach to it, then it is referred to as a stable limit cycle.

8. If all the trajectories close to limit cycle move away as time progress, it is called unstable limit
cycle. Example of unstable limit cycle

T = —Xo Ty = 21 — (1 — 23)29
epsilon = 0.2; v = @(t,x) [-x(2); x(1) — epsilon*(1l-x(1)"2)*xx(2) 1;
for x10 = [-2 0 2]
for x20 = [-3 0 3]
[ts,ys] = oded5(v, [0,50], [x10;x201]);
axis([-4 4 -4 4])
plot (ys(:,1),ys(:,2)); hold on
plot (ys(1,1),ys(1,2),’bo’); hold on % starting point
plot (ys(end, 1) ,ys(end,2),"ks’) % ending point
end
end
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e (HW # 2) solve 5 problems 2.1, 2.2, 2.4, 2.7. and 2.10.
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