
(NC) 1.1 Nonlinear Model

1. Dynamical systems?

2. (Dynamical systems) are modeled by a finite number of coupled 1st-order ordinary differential
equations (ODE):

ẋ1 = f1(t, x1, · · · , xn, u1, · · · , um)

ẋ2 = f2(t, x1, · · · , xn, u1, · · · , um)
... ...

ẋn = fn(t, x1, · · · , xn, u1, · · · , um)

where

ẋi : the derivative of xi w.r.t. the time variable t

u1, · · · , um : the input variables
x1, · · · , xn : the state variables representing the memory that the dynamical system has of its past
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3. (Vector Notation) It can be written as one n-dimensional 1st-order vector differential equation:

ẋ = f(u, x, u) (1)

where

x =

2

664

x1
x2
...
xn

3

775 2 <
n u =

2

664

u1
u2
...
um

3

775 2 <
m f(t, x, u) =

2

664

f1(t, x, u)
f2(t, x, u)

...
fn(t, x, u)

3

775 2 <
n

4. (Output Equation) Variables measured physically by sensors are expressed from the dynami-
cal system:

y = h(t, x, u) 2 <
q (2)

5. (Unforced State Equation) If the input u = �(t, x) is designed and applied to the state equation,
e.g., ẋ = f(t, x, �(t, x)), then it yields the unforced state equation:

ẋ = f(t, x) (3)
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6. (Piecewise Continuous in t and Locally Lipschitz in x) In dealing with ẋ = f(t, x), we require
the function f(t, x) to be piecewise continuous in t and locally Lipschitz in x over the domain
of interest.

(1) For a fixed x,
the function f(t, x) is piecewise continuous in t on an interval J ⇢ <,
if f is continuous in t for all t 2 J except a finite number of points where f may have
finite-jump discontinuities.
) the input u(t) can be designed to have step changes with time.

(2) For all t 2 J ,
a function f(t, x) is locally Lipschitz in x at a point x0,
if there is a neighborhood N(x0, r) = {kx � x0k < r} and a positive constant L such that
f(t, x) satisfies the Lipschitz condition:

kf(t, x)� f(t, y)k  Lkx� yk (4)

for all x, y 2 N(x0, r), where

kxk =
p

xTx =
q
x21 + x22 + · · ·+ x2

n
(5)

) A function f(x) that has infinite slope at one point is not locally Lipschitz at that point.
) For t 2 J ⇢ < and x 2 D ⇢ <

n, if the function f(t, x) and its partial derivatives @fi

@xj
are

continuous and bounded, then the function f(t, x) is locally Lipschitz in x on D.
) For t 2 < and x 2 <

n, if the function f(t, x) and its partial derivatives @fi

@xj
are continuous

and globally bounded, then the function f(t, x) is globally Lipschitz in x on <
n.
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7. (Example 1.1) Find the Lipschitz constant L over the set W = {|x1|  a, |x2|  a} ?

f(x) =


�x1 + x1x2
x2 � x1x2

�

Notice that |a+ b|  |a|+ |b| and |a||b|  1
2 |a|

2 + 1
2 |b|

2

|f1(x)� f1(y)| = |� x1 + x1x2 � (�y1 + y1y2)| = |(y1 � x1) + (x1x2 � y1y2)|

 |y1 � x1|+ |x1x2 � y1y2| = |y1 � x1|+ |x1x2 � x1y2 + x1y2 � y1y2|

= |y1 � x1|+ |x1(x2 � y2) + y2(x1 � y1)|

 |y1 � x1|+ a|x2 � y2|+ a|x1 � y1| = (a+ 1)|x1 � y1|+ a|x2 � y2|

|f2(x)� f2(y)|  a|x1 � y1|+ (a+ 1)|x2 � y2|

kf(x)� f(y)k2 = |f1(x)� f1(y)|
2 + |f2(x)� f2(y)|

2

= (a+ 1)2|x1 � y1|
2 + a2|x2 � y2|

2 + 2a(a+ 1)|x1 � y1||x2 � y2|

+ a2|x1 � y1|
2 + (a+ 1)2|x2 � y2|

2 + 2a(a+ 1)|x1 � y1||x2 � y2|

= (2a2 + 2a+ 1)|x1 � y1|
2 + (2a2 + 2a+ 1)|x2 � y2|

2 + 4a(a+ 1)|x1 � y1||x2 � y2|

 (2a2 + 2a+ 1)|x1 � y1|
2 + (2a2 + 2a+ 1)|x2 � y2|

2 + 2a(a+ 1)|x1 � y1|
2 + 2a(a+ 1)|x2 � y2|

2

= (4a2 + 4a+ 1)|x1 � y1|
2 + (4a2 + 4a+ 1)|x2 � y2|

2 = (2a+ 1)2
�
|x1 � y1|

2 + |x2 � y2|
2
 

= (2a+ 1)2kx� yk2

Therefore, since kf(x)�f(y)k  (2a+1)kx�yk, f is Lipschitz on W with the Lipschitz constant

) L = 2a+ 1
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8. Why Lipschitz condition?
) The local Lipschitz property is related to local existence and uniqueness of the solution of
the state equation ẋ = f(t, x)

9. (Lemma 1.3) (Existence and Uniqueness) Let f(t, x) be piecewise continuous in t and locally
Lipschitz in x for all t � t0 and all x in a domain D ⇢ <

n. Let W be a compact (closed and
bounded) subset of D, x0 2 W , and suppose it is known that every solution of

ẋ = f(t, x) x(t0) = x0 (6)

lies entirely in W . Then there is a unique solution that is defined for all t � t0
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10. (Example 1.3/1.4) Check whether it has a unique solution?

(a) ẋ = �x3 (b) ẋ = �x2 (c) ẋ = x1/3

(a) 1. f(x) = �x3 is locally Lipschitz b/c f 0(x) = �3x2 is continuous and locally bounded for
all x in a domain D ⇢ <.
2. At any instant of time, if x(t) > 0, then ẋ(t) < 0 and x(t) will be decreasing. Similarly,
if x(t) < 0, then ẋ(t) > 0 and x(t) will be increasing. Therefore, starting from any initial
condition x(0) = a, the solution cannot leave the compact set {|x|  |a|}.
Thus we conclude by Lemma 1.3 that ẋ = �x3 has a unique solution for all t � 0

(b) 1. f(x) = �x2 is locally Lipschitz b/c f 0(x) = �2x is continuous and locally bounded for all
x in a domain D ⇢ <.
2. At any instant of time, if x(t) > 0, then ẋ(t) < 0 and x(t) will be decreasing. However,
if x(t) < 0, then ẋ(t) < 0 and x(t) will be decreasing. Therefore, starting from any initial
condition x(0) = a < 0, the solution does not stay in any compact set, but goes to infinity
in finite time
3. Consider x(0) = �1, then the solution does not exist at t = 1.

dx

dt
= �x2 ! �

dx

x2
= dt ! �

Z
x(t)

�1
x�2dx =

Z
t

0
dt !

1

x

����
x(t)

�1

= t ! x(t) =
1

t� 1

(c) 1. f(x) = x1/3 is not locally Lipschitz b/c f 0(x) = 1
3x

�2/3 = 1
3 3p

x2
is not bounded at x = 0.

2. Consider x(0) = 0, then we have two different solutions x(t) = 0 and x(t) = (2t/3)3/2

dx

dt
= x1/3 !

dx

x1/3
= dt !

Z
x(t)

0
x�1/3dx =

Z
t

0
dt !

3

2
x2/3

����
x(t)

0

= t ! x(t) = (2t/3)3/2

8



11. (Autonomous System) A special case of ẋ = f(t, x) arises when the function f does not depend
explicitly on t; that is

ẋ = f(x) (7)

) It is said to be autonomous system.
) The behavior of an autonomous system is invariant to shifts in the time origin.
) All autonomous systems are time invariant, but the converse is not true.

12. (Time Invariant System) More generally, the state model ẋ = f(t, x, u) and y = h(t, x, u) is said
to be time invariant if the functions f and h do not depend explicitly on t; that is,

ẋ = f(x, u) and y = h(x, u) (8)

) However it is not called as autonomous system b/c it has an input u.
) If either f or h depends explicitly on t, then the state model is said to be time varying.
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13. (Transformation or Mapping) Transforming (or mapping) the state equation from x-coordinate
into z-coordinate is often required, z = T (x).

14. (Lemma 1.4) (Diffeomorphism) The continuously differentiable map z = T (x) is a local diffeo-
morphism at x0, if the Jacobian matrix [@T

@x
] is nonsingular at x0. It is a global diffeomorphism

if and only if [@T
@x
] is nonsingular for all x 2 <

n and T is proper; that is, limkxk!1 kT (x)k = 1.

15. (Example 1.5) Assume that h(x1) is continuously differentiable. Consider the map and its
Jacobian

z = T (x) =


�h(x1)� x2/✏

x1

�
!

@T

@x
=

"
@T1

@x1

@T1

@x2
@T2

@x1

@T2

@x2

#
=


�h0(x1) �

1
✏

1 0

�

(1) Since the determinant of @T

@x
is 1

✏
> 0, the Jacobian matrix is nonsingular for all x 2 <

2

(2) Since

lim
kxk!1

kT (x)k = lim
kxk!1

q
[h(x1) + x2/✏]2 + x21 = 1

the map T (x) is proper.

(3) Thus the map z = T (x) is a global diffeomorphism
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16. (Equilibrium Points) Equilibrium points are important features of the state equation. They
are the real solutions of

f(t, x) = 0 from ẋ = f(t, x) = 0

17. (For time invariant systems) the equilibrium points are the real solutions of

f(x) = 0 from ẋ = f(x) = 0 (9)

For example, the pendulum equation

ẋ1
ẋ2

�
=


x2

� sin x1 � bx2

�

has equilibrium points at x1 = n⇡, x2 = 0 for n = 0,±1,±2, · · ·

18. (For linear systems) the equilibrium point is either x = 0 if A is nonsingular or homogeneous
solution of Ax if A is singular.

Ax = 0 from ẋ = Ax = 0 (10)

For example, the linear system

ẋ1
ẋ2

�
=


0 1
0 0

� 
x1
x2

�

has equilibrium points at x1 = ↵ 2 < and x2 = 0 for any real constant ↵.
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(NC) 1.2 Nonlinear Phenomena

1. Linear systems?

2. Superposition principle ) a powerful tool for linear system analysis

ẋ1 = Ax1 +Bu1

ẋ2 = Ax2 +Bu2

(↵ẋ1 + �ẋ2) = A(↵x1 + �x2) + B(↵u1 + �u2)

3. For nonlinear systems, the superposition principle no longer holds

4. The first step in analyzing a nonlinear system is usually to linearize it about some nominal
operating point and to analyze the resulting linear model.

ẋ = f(x) ! ˙̄x =

"
@f(x)

@x

����
x=xo

#
x̄ = Ax̄ with x̄ = x� xo

5. Big limitation of linearization ) it can only predict the local behavior of the nonlinear system
in the vicinity of that point.
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6. Nonlinear phenomena that can take place only in the presence of nonlinearity

(Finite escape time)

• The state of an unstable linear system x ! 1 as t ! 1

• The state of a nonlinear system can go to infinity in finite time. (Example 1.3)

ẋ = �x2 with x(0) = �1 ! x(t) =
1

t� 1
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(Multiple isolated equilibria)

• A linear system can have only one isolated equilibrium point
• A nonlinear system can have more than one isolated equilibrium point.
• The state may converge to one of several steady-state operatin points, depending on

the initial state of the system. (Chapter 2, Example 2.2/2.3)
First consider the dynamical systems

ẋ1 = 0.5x2 � 0.5h(x1) ẋ2 = �0.2x1 � 0.3x2 + 0.24

where h(x1) = 17.76x1 � 103.79x21 + 229.62x31 � 226.31x41 + 83.72x51, then we have 3 equi-
librium points: Q1 = (0.0626, 0.7583) , Q2 = (0.2854, 0.6097) , Q3 = (0.8844, 0.2104)

Second, consider the pendulum dynamics

ẋ1 = x2 ẋ2 = � sin x1 � 0.3x2

then we have equilibrium points at x1 = n⇡, x2 = 0 for n = 0,±1,±2, · · ·

14



(Limit cycles)

• For a linear system to oscillate, it must have a pair of eigenvalues on the imaginary
axis. The amplitude of oscillation will be dependent on the initial state.

• In real life, stable oscillation with fixed amplitude and frequency must be produced
by nonlinear system, irrespective of the initial state. This type of oscillation is known
as limit cycles. (Chapter 2, Example 2.4)
Consider dynamics of Van der Pol oscillator

ẋ1 = x2 ẋ2 = �x1 + ✏(1� x21)x2

then it has only one isolated closed orbit.
– When ✏ = 0.2, the closed orbit is close to a circle of radius 2.
– When ✏ = 1.0, the circular shape of the closed orbit is distorted
– When ✏ = 5.0, the closed orbit is severely distorted.

15



(Subharmonic, harmonic, or almost-periodic oscillations)

• A stable linear system under a periodic input produces a periodic output of the same
frequency. (basic principle of Bode plot)

• A nonlinear system under periodic excitation can oscillate with frequency that are
submultiples or multiples of the input frequency

(Chaos)

• A nonlinear system can have a more complicated steady-state behavior that is not
equilibrium or periodic oscillation. Such behavior is referred to as chaos

• Chaos may refer to any state of confusion or disorder.

(Multiple modes of behavior)

• An unforced system may have more than one limit cycle
• A forced system with periodic excitation may exhibit harmonic, subharmonic, or more

complicated steady-state behavior, depending on the amplitude and frequency of the
input.

• (HW # 1) solve 5 problems 1.1, 1.2, 1.4, 1.8, and 1.14, (If you want it, solve 1.12)
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