
(MPC) 1 Discrete-time MPC for Beginners / 1.1 Introduction

1. This lecture introduces the basic ideas and terms about model predictive control.

2. A single-input and single-output (SISO) state-space model with an embedded integrator is
introduced, which is used in the design of discrete-time predictive controllers with integral
action

3. The design of predictive control within one optimization window is examined for primitive
study

4. The ideas of receding horizon control, and state feedback gain matrices, and the closed-loop
configuration of the predictive control system are discussed

5. The results are extended to multi-input and multi-output (MIMO) systems

6. In a general framework of state-space design, an observer is needed in the implementation,
and this is discussed

7. With a combination of estimated state variables and the predictive controller, the state esti-
mate predictive control is presented including separation principle.
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(MPC) 1.2 State-Space Models with Embedded Integrator

1. For simplicity, we begin our study by assuming that the underlying plant is a single-input and
single-output (SISO) system (strictly proper, Dm = 0), described by:

xm(k + 1) = Amxm(k) + Bmu(k)

y(k) = Cmxm(k)

where xm(k) 2 <
n1, u(k) 2 <, and y(k) 2 <

2. For the integrator embedding, taking a difference operation gives us

xm(k + 1)� xm(k) = Am[xm(k)� xm(k � 1)] + Bm[u(k)� u(k � 1)]

y(k + 1)� y(k) = Cm[xm(k + 1)� xm(k)]

Let us denote the difference of the state and control variables

�xm(k + 1) = xm(k + 1)� xm(k) �xm(k) = xm(k)� xm(k � 1) �u(k) = u(k)� u(k � 1)

where these are the increments of the state and control variables.

3. With this transformation, the difference of the state-space equation is:

�xm(k + 1) = Am�xm(k) + Bm�u(k)

y(k + 1) = y(k) + Cm�xm(k + 1)

= y(k) + CmAm�xm(k) + CmBm�u(k)
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4. Now we have an augmented state-space model as follow:

�xm(k + 1)
y(k + 1)

�
=


Am 0T

m

CmAm 1

� 
�xm(k)
y(k)

�
+


Bm

CmBm

�
�u(k) ! x(k + 1) = Ax(k) + B�u(k)

y(k) =
⇥
0m 1

⇤ �xm(k)
y(k)

�
! y(k) = Cx(k)

where 0m = [0, 0, · · · , 0] is n1 dimensional zero row vector.

5. (Example 1.1) Consider a discrete-time model in the following form:

xm(k + 1) = Amxm(k) + Bmu(k) y(k) = Cmxm(k)

Am =


1 1
0 1

�
Bm =


0.5
1

�
Cm =

⇥
1 0

⇤

(Solution) Since n1 = 2, 0m =
⇥
0 0

⇤
. The augmented model for this plant is given by

x(k + 1) = Ax(k) + B�u(k) y(k) = Cx(k)

A =


Am 0T

m

CmAm 1

�
=

2

4
1 1 0
0 1 0
1 1 1

3

5 B =


Bm

CmBm

�
=

2

4
0.5
1
0.5

3

5 C =
⇥
0m 1

⇤
=

⇥
0 0 1

⇤

The characteristic equation of matrix A is given by

det(�I � A) = det


�I � Am 0T

m

�CmAm (�� 1)

�
= (�� 1) det(�I � Am) = (�� 1)3

Two eigenvalues are from the original integrator plant, and one is from the augmentation of
the plant model.
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6. (Matlab “extmodel.m”) Consider the continuous-time system as follow:

ẋm(t) = Amxm(t) + Bmu(t) y(t) = Cmxm(t)

Am =

2

4
0 1 0
3 0 1
0 1 0

3

5 Bm =

2

4
1
1
3

3

5 Cm =
⇥
0 1 0

⇤

where the sampling time �T = 1[s].

Ac = [0 1 0; 3 0 1;0 1 0];

Bc = [1; 1; 3];

Cc = [0 1 0];

Dc = zeros(1,1);

Delta_t = 1;

[Ad,Bd,Cd,Dd] = c2dm(Ac,Bc,Cc,Dc,Delta_t);

[m1,n1] = size(Cd);

[n1,n_in] = size(Bd);

A_e = eye(n1+m1,n1+m1);

A_e(1:n1,1:n1) = Ad;

A_e(n1+1:n1+m1,1:n1) = Cd * Ad;

B_e = zeros(n1+m1,n_in);

B_e(1:n1,:) = Bd;

B_e(n1+1:n1+m1,:) = Cd * Bd;

C_e = zeros(m1,n1+m1);

C_e(:,n1+1:n1+m1) = eye(m1,m1);
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(MPC) 1.3 Predictive Control within One Optimization Window

1. Upon formulation of the mathematical model, the next step in the design of a predictive con-
trol system is to calculate the predicted plant output with the future control signal as the ad-
justable variables.

2. Assume that the current time is k and the length of the optimization window is Np, as the
number of samples.

3. Prediction of State and Output Variables

a) Assuming that, at the sampling instant k, the state variable vector x(k) is available
through measurement, the state x(k) provides the current plant information.

b) The future control trajectory is denoted by

�u(k), �u(k + 1), �u(k + 2), · · · ,�u(k +Nc � 1)

where Nc is called the control horizon dictating the number of parameters used to capture
the future control trajectory.

c) With given information x(k), the future state variables are predicted for Np, number of
samples, where Np is called the prediction horizon. Np is also the length of the optimiza-
tion window.

d) The future (or predicted) state variables are denoted by

x(k + 1|k), x(k + 2|k), x(k + 3|k), · · · , x(k +Np|k)
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where x(k +m|k) is the predicted state variable at k +m with given current plant infor-
mation x(k).

e) The control horizon Nc is chosen to be less than (or equal to) the prediction horizon Np,
namely Nc  Np.

f) The future state variables are calculated sequentially using the set of future control pa-
rameters

x(k + 1|k) = Ax(k) + B�u(k)

x(k + 2|k) = Ax(k + 1|k) + B�u(k + 1)

= A2x(k) + AB�u(k) + B�u(k + 1)

x(k + 3|k) = Ax(k + 2|k) + B�u(k + 2)

= A3x(k) + A2B�u(k) + AB�u(k + 1) + B�u(k + 2)
...

x(k +Np|k) = ANpx(k) + ANp�1B�u(k) + ANp�2B�u(k + 1) + · · ·+ ANp�NcB�u(k +Nc � 1)
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g) From the predicted state variables, the predicted output variables are, by substitution

y(k + 1|k) = Cx(k + 1|k) = CAx(k) + CB�u(k)

y(k + 2|k) = Cx(k + 2|k) = CA2x(k) + CAB�u(k) + CB�u(k + 1)

y(k + 3|k) = Cx(k + 3|k) = CA3x(k) + CA2B�u(k) + CAB�u(k + 1) + CB�u(k + 2)
...

y(k +Np|k) = CANpx(k) + CANp�1B�u(k) + CANp�2B�u(k + 1) + · · ·+ CANp�NcB�u(k +Nc � 1)

h) Note that all predicted variables are formulated in terms of current state x(k) and the
future control movement �u(k + j), for j = 0, 1, 2, · · · , Nc � 1. As a compact form,

Y = Fx(k) + ��U
2

66664

y(k + 1|k)
y(k + 2|k)
y(k + 3|k)

...
y(k +Np|k)

3

77775
=

2

66664

CA
CA2

CA3

...
CANp

3

77775
x(k) +

2

66664

CB 0 0 · · · 0
CAB CB 0 · · · 0
CA2B CAB CB · · · 0

...
CANp�1B CANp�2B CANp�2B · · · CANp�NcB

3

77775

2

66664

�u(k)
�u(k + 1)
�u(k + 2)

...
�u(k +Nc � 1)

3

77775

i) This compact form will be utilized for the implementation of the MPC.

Y = Fx(k) + ��U

where Y 2 <
Np, F 2 <

Np⇥n, x(k) 2 <
n, � 2 <

Np⇥Nc, and �U 2 <
Nc
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4. Optimization

a) For a given set-point signal r(k) 2 < at sample time k, within a prediction horizon, the
objective of the predictive control system is to bring the predicted output as close as
possible to the set-point signal.

RT

s
=

⇥
1 1 · · · 1

⇤
r(k)

= R̄T

s
r(k)

where R̄s =
⇥
1 1 · · · 1

⇤T is a Np-dimensional one column vector. On the other hand, for
the trajectory tracking signal,

RT

s
=

⇥
r(k + 1) r(k + 2) · · · r(k +Np)

⇤

where Rs 2 <
Np has a future reference trajectory to be followed.

b) This objective is then translated into a design to find the best control parameter vector �U

such that an error function between the set-point (or future reference) and the predicted
output is minimized. Let us define the cost function J that reflects the control objective

J =
1

2
(Rs � Y )T (Rs � Y ) +

1

2
�UT R̄�U

where the control input weighting R̄ = rwINc⇥Nc is a diagonal matrix and rw is a tuning

parameter.

• when rw = 0, we would not want to pay any attention to how large the �U might be.
• when rw � 0, the cost function is interpreted as the situation where we would care-

fully consider how large the �U might be and cautiously reduce the error |Rs � Y |.
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c) To find the optimal �U that will minimize J ,

J =
1

2
(Rs � Fx(k)� ��U)T (Rs � Fx(k)� ��U) +

1

2
�UT R̄�U

=
1

2
(Rs � Fx(k))T (Rs � Fx(k))��UT�T (Rs � Fx(k)) +

1

2
�UT�T��U +

1

2
�UT R̄�U

d) The necessary condition of the minimum J is obtained as

@J

@�U
= ��T (Rs � Fx(k)) + �T��U + R̄�U = 0 ! �U = (�T�+ R̄)�1�T (Rs � Fx(k))

where the matrix (�T�+ R̄) is called the Hessian matrix in the optimization literature.

e) In the set-point control case, note that Rs = R̄sr(k). The optimal solution of the control
signal is linked to the set-point signal r(k) and the state variable x(k):

�U = (�T�+ R̄)�1�T (R̄sr(k)� Fx(k))

5. (Matlab “mpcgain.m”)

function [Phi_Phi, Phi_F, Phi_R, F, BarRs, Phi, A_e, B_e,C_e]

= mpcgain(Ap, Bp, Cp, Nc, Np);

[m1,n1] = size(Cp);

[n1,n_in] = size(Bp);

A_e = eye(n1+m1,n1+m1);

A_e(1:n1,1:n1) = Ap;

A_e(n1+1:n1+m1,1:n1) = Cp * Ap;

B_e = zeros(n1+m1,n_in);

B_e(1:n1,:) = Bp;
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B_e(n1+1:n1+m1,:) = Cp * Bp;

C_e = zeros(m1,n1+m1);

C_e(:,n1+1:n1+m1) = eye(m1,m1);

n = n1 + m1;

h(1,:) = C_e;

F(1,:) = C_e * A_e;

for kk=2:Np

h(kk,:) = h(kk-1,:) * A_e;

F(kk,:) = F(kk-1,:) * A_e;

end

v = h * B_e;

Phi = zeros(Np,Nc); %declare the dimension of Phi

Phi(:,1) = v; % first column of Phi

for i=2:Nc

Phi(:,i) = [zeros(i-1,1); v(1:Np-i+1,1)]; %Toeplitz matrix

end

BarRs = ones(Np,1);

Phi_Phi = Phi’ * Phi;

Phi_F = Phi’ * F;

Phi_R = Phi’ * BarRs;
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6. (Example 1.2) Consider a first-order system

xm(k + 1) = 0.8xm(k) + 0.1u(k) y(k) = xm(k)

(1) Find the augmented state-space model?
(2) Calculate the components that form the prediction of future output Y , and the quantities
�T�, �TF , and �T R̄s with Np = 10 and Nc = 4?
(3) Assuming that, at a time k = 10, r(k) = 1 and the state vector x(k) = [0.1 , 0.2]T , find the
optimal solution �U with respect to the cases where rw = 0 and rw = 10, and compare the
results?
(solution)
(1) The augmented state-space equation is


�xm(k + 1)
y(k + 1)

�
=


0.8 0
0.8 1

� 
�xm(k)
y(k)

�
+


0.1
0.1

�
�u(k)

y(k) =
⇥
0 1

⇤ �xm(k)
y(k)

�

(2) Run “mpcgain.m”
(3) when rw = 0, r(k) = 1 and x(k) = [0.1, 0.2]T , Type

DelU = inv(Phi_Phi)*(Phi_R*1 - Phi’*F*[0.1 ; 0.2])

when rw = 10, r(k) = 1 and x(k) = [0.1, 0.2]T ,, Type

DelU = inv(Phi_Phi + 10*eye(Nc,Nc))*(Phi_R*1 - Phi’*F*[0.1 ; 0.2])

7. (Example 1.3) Optimality can be proven using the completion of squares. Try it!
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(MPC) 1.4 Receding Horizon Control

1. Among the controls �u(k),�u(k+1), · · · ,�u(k+Nc�1), the receding horizon control principle
requires the first sample of this sequence, i.e., �u(k) while ignoring the rest of the sequence.

2. When the next sample period arrives, the more recent measurement is taken to form the state
vector x(k+1) for calculation of the new sequence of control signal. This procedure is repeated
in real time to give the receding horizon control law.

3. (Example 1.4) Consider a first-order system

xm(k + 1) = 0.8xm(k) + 0.1u(k) y(k) = xm(k)

where Np = 10, Nc = 4, rw = 0, r(k) = 1 for all k, at an initial time k = 10, the state vector
x(10) = [0.1 , 0.2]T and u(9) = 0.
(solution)
At sample time k = 10,

�U = (�T�)�1�T (R̄sr(k)� Fx(k)) =
⇥
7.2 �6.4 0 0

⇤T

u(10) = u(9) +�u(10) = 0 + 7.2 = 7.2 xm(10) = y(10) = 0.2

xm(11) = 0.8xm(10) + 0.1u(10) = 0.88 x(11) =


�xm(11)
y(11)

�
=


0.88� 0.2

0.88

�
=


0.68
0.88

�

At sample time k = 11,

�U =
⇥
�4.24 �0.96 0 0

⇤T
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u(11) = u(10) +�u(11) = 7.2� 4.24 = 2.96

xm(12) = 0.8xm(11) + 0.1u(11) = 1 x(12) =


�xm(12)
y(12)

�
=


0.12
1

�

At sample time k = 12,

�U =
⇥
�0.96 0 0 0

⇤T

u(12) = u(11) +�u(12) = 2.96� 0.96 = 2

xm(13) = 0.8xm(12) + 0.1u(12) = 1 x(13) =


�xm(13)
y(13)

�
=


0
1

�

At sample time k = 13, �U =
⇥
0 0 0 0

⇤T

The figure shows the trajectories of the state variable �xm(k) and y(k), as well as the control
signal that was used to regulate the output.
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4. Closed-loop System by Set-point Control

a) Reconsider the optimal parameter vector at a given time k

�U = (�T�+ R̄)�1�T R̄sr(k)� (�T�+ R̄)�1�TFx(k)

where

(�T�+ R̄)�1�T R̄sr(k) : the set-point change
(�T�+ R̄)�1�TF : state feedback control within the framework of predictive control

b) Because of the receding horizon control principle, we only take the first element of �U at
time k as the incremental control, thus

�u(k) = [1 0 · · · 0](�T�+ R̄)�1�T R̄sr(k)� [1 0 · · · 0](�T�+ R̄)�1�TFx(k)

= Kyr(k)�Kmpcx(k)

where

Ky 2 < : first element of (�T�+ R̄)�1�T R̄s

Kmpc 2 <
1⇥n : first row of (�T�+ R̄)�1�TF

c) Let us apply above incremental control to the augmented system

x(k + 1) = Ax(k) + B�u(k)

= Ax(k) + BKyr(k)� BKmpcx(k)

= [A� BKmpc]x(k) + BKyr(k)
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d) Characteristic equation:

det[�I � (A� BKmpc)] = 0

e) Because of the special structures of the matrices C and A, the last column of F is identical
to R̄s, which is [1 1 · · · 1], therefore Ky is identical to the last element of Kmpc.

Kmpc = [Kx Ky]

where Kx 2 <
1⇥n1 and Ky 2 <.

f) (Example 1.5) Reconsider the first-order system

xm(k + 1) = 0.8xm(k) + 0.1u(k) y(k) = xm(k)

where Np = 10, Nc = 4, r(k) = 1 for all k, find the closed-loop feedback matrices when
rw = 0 and rw = 10?
(Solution)
When rw = 0, we have

Ky = [1 0 0 0](�T�+ rwI4⇥4)
�1�T

⇥
1 1 1 1 1 1 1 1 1 1

⇤T
= 10

kmpc = [1 0 0 0](�T�+ rwI4⇥4)
�1�TF = [8 10]

When rw = 10, we have

Ky = [1 0 0 0](�T�+ rwI4⇥4)
�1�T

⇥
1 1 1 1 1 1 1 1 1 1

⇤T
= 0.2453

kmpc = [1 0 0 0](�T�+ rwI4⇥4)
�1�TF = [0.6939 0.2453]
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5. (Matlab “reced 2nd.m”) for (Example 1.6) Suppose that a continuous-time system is described
by the transfer function

G(s) =
!2
n

s2 + 2⇣!n + !2
n

where !n = 10, ⇣ = 0.5, �t = 0.01[s], Nc = 3, Np = 20, R̄ = rwINc⇥Nc, and rw = 0.5. Obtain the
step response ?

omega = 10;

zeta = 0.5;

numc = omegaˆ2;

denc = [1 2*zeta*omega omegaˆ2];

[Ac,Bc,Cc,Dc] = tf2ss(numc,denc);

Delta_t = 0.01;

[Ap,Bp,Cp,Dp] = c2dm(Ac,Bc,Cc,Dc,Delta_t);

Nc = 3;

Np = 20;

rw = 0.5;

[Phi_Phi, Phi_F, Phi_R, F, BarRs, Phi, A_e, B_e, C_e]

= mpcgain(Ap, Bp, Cp, Nc, Np);

[n,n_in] = size(B_e);

xm = [0;0];

Xf = zeros(n,1);
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N_sim=100;

r = ones(N_sim,1);

u=0; % u(k-1) = 0

y=0;

for kk=1:N_sim;

DeltaU = inv(Phi_Phi+rw*eye(Nc,Nc))*(Phi_R*r(kk) -Phi_F*Xf);

deltau = DeltaU(1,1);

u = u + deltau;

u1(kk) = u;

y1(kk) = y;

xm_old = xm;

xm = Ap * xm + Bp * u;

y = Cp * xm ;

Xf = [xm-xm_old;y];

end

k = 0:(N_sim-1);

figure

subplot(211)

plot(k,y1)

xlabel(’Sampling Instant’)

legend(’Output’)

subplot(212)

plot(k,u1)

xlabel(’Sampling Instant’)

legend(’Control’)
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(MPC) 1.5 Predictive Control of MIMO Systems

1. For MIMO systems, assume that the plant has m inputs, q outputs and n1 states.

2. In the general formulation of the predictive control problem, we also take the plant noise and
disturbance into consideration.

xm(k + 1) = Amxm(k) + Bmu(k) + Bdw(k)

y(k) = Cmxm(k)

where w(k) is the input disturbance, assumed to be a sequence of integrated white noise. This
means that the input disturbance w(k) is related to a zero-mean, white noise sequence ✏(k) by
the difference equation

w(k)� w(k � 1) = ✏(k)

3. By defining �xm(k) = xm(k)� xm(k � 1) and �u(k) = u(k)� u(k � 1), we have

�xm(k + 1) = Am�xm(k) + Bm�u(k) + Bd✏(k)

y(k + 1)� y(k) = Cm�xm(k + 1) = CmAm�xm(k) + CmBm�u(k) + CmBd✏(k)

4. Choosing new state variable vector x(k) = [�xm(k)T y(k)T ]T 2 <
n1+q, we have


�xm(k + 1)
y(k + 1)

�
=


Am 0n1⇥q

CmAm Iq⇥q

� 
�xm(k)
y(k)

�
+


Bm

CmBm

�
�u(k) +


Bd

CmBd

�
✏(k)

y(k) =
⇥
0q⇥n1 Iq⇥q

⇤ �xm(k)
y(k)

�
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5. For notational simplicity, we introduce the augmented state-space model as follow:

x(k + 1) = Ax(k) + B�u(k) + Bd✏(k)

y(k) = Cx(k)

where x(k) 2 <
n with n = n1 + q, A 2 <

n⇥n, B 2 <
n⇥m, and C 2 <

q⇥n

6. Eigenvalues of the augmented model are obtained by characteristic polynomial equation

det[�I � A] = det


�In1⇥n1 � Am 0n1⇥q

�CmAm (�� 1)Iq⇥q

�

= (�� 1)q det[�In1⇥n1 � Am] = 0

where the eigenvalues of the augmented model are the union of the eigenvalues of the plant
model and the q eigenvalues, � = 1.

7. This means that there are q integrators embedded into the augmented design model. This is
the means we use to obtain integral action for the MPC systems.

8. Stabilizability (Controllability) / Detectability (Observability)
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9. Minimal Realization (no pole-zero cancelation) guarantees controllability and observability of
the control system. For example

G(z) =
(z � 0.1)

(z � 0.1)(z � 0.9)
non-minimal Am =


1 �0.09
1 0

�
Bm =


1
0

�
Cm =

⇥
1 �0.1

⇤

For minimal realization, matlab code is

numd = [1 -0.1];

dend = conv([1 -0.1],[1 -0.9]);

sys1 = tf(numd,dend) ;

sys = ss(sys1,’min’);

[Am,Bm,Cm,Dm] = ssdata(sys)

The minimal realization through model-order reduction is

Am = 0.9 Bm = �0.9285 Cm = �1.077 minimal G(z) =
1

z � 0.9
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10. Solution of Predictive Control for MIMO Systems
Define the vectors Y and �U as

�U =
⇥
�u(k)T �u(k + 1)T · · · �u(k +Nc � 1)T

⇤T

Y =
⇥
y(k + 1|k)T y(k + 2|k)T · · · y(k +Np|k)T

⇤T

Based on the state-space model (A,B,C), the future state variables are calculated sequentially
using the set of future control parameters

x(k + 1|k) = Ax(k) + B�u(k) + Bd✏(k)

x(k + 2|k) = Ax(k + 1|k) + B�u(k + 1) + Bd✏(k + 1|k)

= A2x(k) + AB�u(k) + B�u(k + 1) + ABd✏(k) + Bd✏(k + 1|k)
...

x(k +Np|k) = ANpx(k) + ANp�1B�u(k) + ANp�2B�u(k + 1) + · · ·+ ANp�NcB�u(k +Nc � 1)

+ ANp�1Bd✏(k) + ANp�2Bd✏(k + 1|k) + · · ·+Bd✏(k +Np � 1|k)

With the assumption that ✏(k) is a zero-mean white noise sequence, the predicted value of of
✏(k + i|k) at future sample i is assumed to be zero. The prediction of the state variable and
output variable is calculated as the expected values being zero. Effectively, we have

Y = Fx(k) + ��U
2

66664

y(k + 1|k)
y(k + 2|k)
y(k + 3|k)

...
y(k +Np|k)

3

77775
=

2

66664

CA
CA2

CA3

...
CANp

3

77775
x(k) +

2

66664

CB 0 0 · · · 0
CAB CB 0 · · · 0
CA2B CAB CB · · · 0

...
CANp�1B CANp�2B CANp�2B · · · CANp�NcB

3

77775

2

66664

�u(k)
�u(k + 1)
�u(k + 2)

...
�u(k +Nc � 1)

3

77775
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The incremental optimal control within one optimization window is given by

�U = (�T�+ R̄)�1�T (R̄sr(k)� Fx(k))

where �T� 2 <
mNc⇥mNc, �TF 2 <

mNc⇥n, �T R̄s equals the last q columns of �TF . Applying the
receding horizon control principle, the first m elements in �U are taken to form the incremen-
tal optimal control:

�u(k) =
⇥
Im⇥m 0m⇥m 0m⇥m · · · 0m⇥m

⇤
(�T�+ R̄)�1�T (R̄sr(k)� Fx(k))

= Kyr(k)�Kmpcx(k)
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(MPC) 1.6 State Estimation

1. Till now, we assumed that all the state variables are measurable or available, but some of
them may be impossible to measure. Thus we need observer to provide the state estimates.

2. Our focus here is to use an observer in the design of predictive control.

3. Basic Ideas About an Observer (Luenberger Observer)

a) For given plant state model,

xm(k + 1) = Amxm(k) + Bmu(k) y(k) = Cmx(k)

the typical Luenberger observer is designed as following form:

x̂m(k + 1) = Amx̂m(k) + Bmu(k) +Kob(y(k)� Cmx̂m(k))

where Kob is the observer gain matrix.

b) To choose the observer gain Kob, we examine the closed-loop error dynamics with error
state x̃m(k) = xm(k)� x̂m(k)

x̃m(k + 1) = Amx̃m(k)�Kob(y(k)� Cmx̂m(k))

= (Am �KobCm)x̃m(k)

Now, with given initial error x̃m(0), we have

x̃m(k) = (Am �KobCm)
kx̃m(0)

where the observer gain can be used to manipulate the convergence rate of the error.
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c) (Example 1.7) Consider the linearized pendulum equation

✓̈ + !2
n
✓ = u

Design an observer that reconstructs the angle ✓ of the pendulum given measurements
of ✓̇, namely y = ✓̇, where !n = 2, �t = 0.1[s], and the desired observer poles are chosen to
be 0.1 and 0.2 ?
(Solution)
Let x1 = ✓ and x2 = ✓̇, the model is obtained by


ẋ1(t)
ẋ2(t)

�
=


0 1

�!2
n

0

� 
x1(t)
x2(t)

�
+


0
1

�
u(t)

y(t) =
⇥
0 1

⇤ x1(t)
x2(t)

�

The corresponding discrete-time model is obtained using the matlab function c2dm(A,B,C,D,�t)


x1(k + 1)
x2(k + 1)

�
=


0.9801 0.0993
�0.3973 0.9801

� 
x1(k)
x2(k)

�
+


0.0050
0.0993

�
u(k)

y(k) =
⇥
0 1

⇤ x1(k)
x2(k)

�

Assume that the observer gain Kob = [j1, j2]T 2 <
2. The closed-loop characteristic polyno-

mial for the observer is

det(�I � Am +KobCm) = det

✓
�


1 0
0 1

�
�


0.9801 0.0993
�0.3973 0.9801

�
+


j1
j2

� ⇥
0 1

⇤◆

= det


�� 0.9801 �0.0993 + j1
0.3973 �� 0.9801 + j2

�
= (�� 0.1)(�� 0.2)
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Solution of polynomial equation gives us the observer gain as

) j1 = �1.6284 j2 = 1.6601

Now we have finished the observer design

x̂1(k + 1)
x̂2(k + 1)

�
=


0.9801 0.0993
�0.3973 0.9801

� 
x̂1(k)
x̂2(k)

�
+


0.0050
0.09930

�
u(k) +


�1.6284
1.6601

�
(x2(k)� x̂2(k))

When u(k) = 0, x1(0) = 1, x2(0) = 0, x̂1(0) = 0.3, andx̂2(0) = 0
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(MPC) 1.7 State Estimate Predictive Control

1. In the implementation of predictive control, an observer is used for the cases where the state
variable x(k) at time k is not measurable. Essentially, the state variable x(k) is estimated via
an observer of the form:

x̂(k + 1) = Ax̂(k) + B�u(k) +Kob(y(k)� Cx̂(k))

2. With the information of x̂(k) replacing x(k), the predictive control law is then modified to find
�U by minimizing

J =
1

2
(Rs � F x̂(k))T (Rs � F x̂(k))��UT�T (Rs � F x̂(k)) +

1

2
�UT

�
�T�+ R̄

�
�U

3. The optimal solution is obtained as

@J

@�U
= 0 ! �U = (�T�+ R̄)�1�T (Rs � F x̂(k))

4. Application of the receding horizon control principle leads to the optimal solution of �u(k) at
time k:

�u(k) = Kyr(k)�Kmpcx̂(k)
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5. Standard state-space feedback control structure based on the estimated x̂(k) is illustrated in
the following figure
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6. Separation Principle (between control eigenvalues and observer eigenvalues)

a) Let us obtain the closed-loop control system using x̃ = x� x̂

x(k + 1) = Ax(k) + B�u(k) = Ax(k)� BKmpcx̂(k) + BKyr(k)

= (A� BKmpc)x(k)� BKmpcx̃(k) + BKyr(k)

x̃(k + 1) = (A�KobC)x̃(k)

b) Combining above both equations, we have

x(k + 1)
x̃(k + 1)

�
=


A� BKmpc �BKmpc

0n⇥n A�KobC

� 
x(k)
x̃(k)

�
+


BKy

0n⇥m

�
r(k)

c) Characteristic equation of the closed-loop control system is determined by

det


�


In⇥n 0n⇥n

0n⇥n In⇥n

�
�


A� BKmpc �BKmpc

0n⇥n A�KobC

��
= det[�In⇥n � A+BKmpc] · det[�In⇥n � A+KobC] = 0

d) The closed-loop model predictive control system with state estimate has two independent
characteristic equations:

det[�In⇥n � A+BKmpc] = 0

det[�In⇥n � A+KobC] = 0

This means that the design of the predictive control law and the observer can be carried
out independently (or separately), since the eigenvalues remain unchanged.
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