
(DOB) 2. Linear Disturbance Estimator

1. Four commonly used linear disturbance estimation techniques are introduced.

2. The frequency domain DOB, which was proposed in the industrial application society in late
1980s, is presented first for both minimum phase and nonminimum phase cases.

3. The time domain formulation of the DOB is provided with a detailed analysis.

4. Finally, the extended state observer technique, which can simultaneously estimate states and
disturbances, is presented.
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(DOB) 2.2 Frequency Domain DOB (Minimum-Phase Case)

1. Consider a SISO linear minimum phase system

Y (s) = Gp(s)[U(s) +D(s)] � Y (s) = Gn(s)[U(s) +Dl(s)]

2. Note that the DOB can estimate not only the external disturbances but also the internal dis-
turbances caused by model uncertainties. To show how the DOB estimates the lumped distur-
bances (or extended disturbance in the PID control part) consisting of both the external and
internal ones,

Dl(s) = G�1
n
(s)Gp(s)D(s) + [G�1

n
(s)Gp(s)� 1]U(s)

D̂(s) = Q(s)G�1
n
(s)Y (s)�Q(s)U(s) = Q(s)Dl(s)
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3. The lumped disturbance estimation error becomes

Ed(s) = D̂(s)�Dl(s) = [Q(s)� 1]Dl(s)

and it will tend to zero as time goes to infinity if the filter Q(s) is selected as a lowpass filter
form, that is, lims!0Q(s) = 1.

4. It is also derived that the output can be represented as

Y (s) = Gp(s)[U(s) +D(s)]

=
Gp(s)

1�Q(s)
[Uc(s)�Q(s)G�1

n
(s)Y (s)] +Gp(s)D(s)

Gn(s)Y (s) =
Gp(s)

1�Q(s)
[Gn(s)Uc(s)�Q(s)Y (s)] +Gn(s)Gp(s)D(s)

(1�Q(s))Gn(s)Y (s) = Gp(s)Gn(s)Uc(s)�Gp(s)Q(s)Y (s) + (1�Q(s))Gn(s)Gp(s)D(s)

) Y (s) =
Gp(s)Gn(s)

(1�Q(s))Gn(s) +Gp(s)Q(s)
Uc(s) +

(1�Q(s))Gn(s)Gp(s)

(1�Q(s))Gn(s) +Gp(s)Q(s)
D(s)

5. Clearly, if the filter is selected as a lowpass form, then Q(s) = 1 for low frequencies:

Y (s) ⇡ Gn(s)Uc(s) + 0 ·D(s)

Above equation implies that the system with the frequency-domain DOB behaves as if it were
the nominal plant in the low-frequency domain. It can be concluded that the low-frequency-
domain disturbances have been eliminated from the system by feedforward compensation.
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6. The performance of disturbance estimation is determined by the design of lowpass filter Q(s).

• The relative degree of Q(s), that is, the order difference between the denominator and the
numerator, should be no less than that of the nominal model Gn(s). This design principle
is to make sure that the control structure is realizable, i.e., Q(s)G�1

n
(s) should be proper;

• In the domain of low-frequency, Q(s) approaches to 1, guaranteeing that the estimate of
lumped disturbance approximately equals to the lumped disturbance.

7. Numerical example

Gp(s) =
s+ 3

(s+ 1)(s+ 4)
Gn(s) =

s+ 1

(s+ 0.5)(s+ 2)
Q(s) =

1

�s+ 1

• In this case, the disturbance estimation accuracy depends on the selection of the filter
parameter � in Q(s). Actually, the property of disturbance estimation is determined by
the frequency characteristics of transfer function 1�Q(s).
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• The smaller the filter parameter � is, the smaller the magnitude of transfer function
1�Q(s) is.

• Let us apply the external disturbance as follows. A smaller filter parameter � has brought
a better transient dynamics in estimation and a smaller static disturbance estimation
error, while a lager filter parameter has resulted in a larger disturbance estimation error.

d(t) =

⇢
sin t 0  t  1
1 + sin t t > 1
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(DOB) 2.2 Frequency Domain DOB (Nonminimum-Phase Case)

1. Consider the following nominal transfer function

Gn(s) =
kp(��s+ 1)

(⌧p1s+ 1)(⌧p2s+ 1)
e�⌧s

2. Suppose that the filter in the disturbance observer is chosen as a first-order low-pass form

Q(s) =
1

�s+ 1

3. If we use the previous method for the minimum phase case to construct the disturbance ob-
server for system, it yields

G�1
n
(s)Q(s) =

(⌧p1s+ 1)(⌧p2s+ 1)

kp(��s+ 1)(�s+ 1)
e⌧s

Note that the zeros of the nominal model become the poles of DOB. This results in an unstable
observer and thus the possibility of unbounded disturbance estimation.
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4. To this end, The model has to be factored out before using the model inverse for the observer
design. The most widely used method would be all-pass factorization ��s+1

�s+1 , which places the
RHP zero in the non-invertible part of the nominal model, and it also places a pole at the
reflection of the RHP zero.

5. It is factored as follows:

stable and minimum Gn�(s) =
kp(�s+ 1)

(⌧p1s+ 1)(⌧p2s+ 1)
all-pass Gn+(s) =

��s+ 1

�s+ 1
e�⌧s

6. From the above DOB configuration for nonminimum phase plant, we have the output

Y (s) = Gp(s)[U(s) +D(s)]

=
Gp(s)

1�Q(s)Gn+(s)
[Uc(s)�Q(s)G�1

n�
(s)Y (s)] +Gp(s)D(s)

Gn�(s)Y (s) =
Gp(s)

1�Q(s)Gn+(s)
[Gn�(s)Uc(s)�Q(s)Y (s)] +Gn�(s)Gp(s)D(s)

(1�Q(s)Gn+(s))Gn�(s)Y (s) = Gp(s)Gn�(s)Uc(s)�Gp(s)Q(s)Y (s) + (1�Q(s)Gn+(s))Gn�(s)Gp(s)D(s)

) Y (s) =
Gp(s)Gn�(s)

Gn�(s)�Gn(s)Q(s) +Gp(s)Q(s)
Uc(s) +

Gn�(s)(1�Gn+(s)Q(s))Gp(s)

Gn�(s)�Gn(s)Q(s) +Gp(s)Q(s)
D(s)
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7. Note that the factorization ensures that lims!0Gn+(s) = 1 and thus lims!0Gn(s) = Gn�(s), and
also the filter lims!0Q(s) = 1 is selected as a low-pass form, it follows for low frequencies

Y (s) ⇡ Gn�(s)Uc(s) + 0 ·D(s) for low frequencies

where the system with frequency domain DOB behaves as if it were the nominal plant Gn�(s)

in the low frequency domain.

8. The low-frequency-domain disturbances for such nonminimum phase system have been elim-
inated from the system by feedforward compensation.
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9. Numerical example, consider the step disturbance d(t) = 3 for t � 2[s].

• The smaller the filter parameter is, the faster the convergence rate of estimation error is.

• However, a smaller filter parameter will result in a larger nonminimum phase effects of
error dynamics of DOB.

• There exists a trade-off between faster disturbance-estimation dynamics and smaller
nonminimum phase effects.
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(DOB) 2.3 Time Domain DOB

1. Consider a MIMO linear system with disturbances, depicted by

ẋ = Ax+Buu+Bdd

y = Cx

2. The following time-domain DOB can be employed to estimate the disturbances

ż = �LBd(z + Lx)� L(Ax+Buu)

d̂ = z + Lx

where d̂ the disturbance estimation vector, z the internal variable vector of the observer, and
L the observer gain matrix to be designed.
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3. The disturbance estimation error and its time-derivative are obtained as

ed = d̂� d

ėd =
˙̂d� ḋ = ż + Lẋ� ḋ

= [�LBdd̂� L(Ax+Buu)] + L[Ax+Buu+Bdd]� ḋ = �LBd[d̂� d]� ḋ

= �LBded � ḋ

where the estimation error system is asymptotically stable with appropriately chosen param-
eter L such that �LBd is Hurwitz when the disturbance is a constant.

4. Numerical simulation,

The time-domain DOB here can be used for both minimum and nonminimum phase MIMO
linear systems. However, it requires all the state information for observer design, while the
frequency-domain DOB only uses the output and input information.
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(DOB) 2.4 Extended State Observer (ESO)

1. Consider a class of SISO uncertain systems with order of n, described by the following differ-
ential equation

y(n)(t) = f(y(t), ẏ(t), ÿ(t), · · · , y(n�1)(t), d(t), t) + bu(t)

where f(y(t), ẏ(t), ÿ(t), · · · , y(n�1)(t), d(t), t) is the lumped disturbances consisting of the exter-
nal one d(t) and internal ones caused by model uncertainties.
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2. Define new states using the integrator chains as follows:

x1 = y x2 = ẏ · · · xn�1 = y(n�2) xn = y(n�1)

ẋ1 = x2 ẋ2 = x3 · · · ẋn�1 = xn ẋn = f(x1, x2, · · · , xn, d, t) + bu

3. The augmented state variable is introduced in the framework of an ESO to linearize system.

xn+1 = f(x1, x2, · · · , xn, d, t)

Now, the extended-state equation and its linear ESO are given by

ẋ1 = x2 ! ż1 = z2 � �1(z1 � y)

ẋ2 = x3 ! ż2 = z3 � �2(z1 � y)
... ...

ẋn�1 = xn ! żn�1 = zn � �n�1(z1 � y)

ẋn = xn+1 + bu ! żn = zn+1 � �n(z1 � y) + bu

ẋn+1 = h(t) ! żn+1 = ��n+1(z1 � y)

y = x1

where h(t) = ḟ(x1, x2, · · · , xn, d, t) is assumed to be bounded, and z1, z2, · · · , zn, zn+1 are esti-
mates of states x1, x2, · · · , xn, xn+1, respectively, and �1, �2, · · · , �n+1 are the observer gains

4. The estimation error ei = zi � xi dynamics is obtained by

ė1 = e2 � �1e1 ė2 = e3 � �2e1 · · · ėn = en+1 � �ne1 ėn+1 = ��n+1e1 � h(t)
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5. Numerical example, consider the following second-order system

ẋ1 = x2 ẋ2 = ex1 + d+ u y = x1

where the lumped disturbances is taken as f(x, d) = ex1 + d and the external disturbance is
taken as a constant one: d(t) = 3 for t � 6[s].

• The ESO for system is designed as

ż1 = z2 � �1(z1 � y) ż2 = z3 � �2(z1 � y) + u ż3 = ��3(z1 � y)

where the parameters are chosen as �1 = 15, �2 = 75, �3 = 125.

• Here, a composite control law is designed as

u = �4z1 � 4z2 � z3

• The designed ESO can effectively estimate both states and disturbances in the presence
of plant uncertainties.

• Note that the ESO only demands for output and input information of the system. So it is
usually employed for output feedback based disturbance rejection.
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(DOB) 3. Nonlinear Disturbance Observer (DOB)

1. Two kinds of practical nonlinear DOB are presented.

2. The first one is referred to as constant nonlinear DOB, the estimation error of which converges
to zero if the disturbance is constant one.

3. The second kind is referred to as harmonic nonlinear DOB. The disturbances in this case are
not limited to constant ones anymore.

4. The amplitudes of disturbances are not necessarily required for the observer design and anal-
ysis. However, in order to achieve accurate estimation, the frequencies of harmonic distur-
bances under consideration have to be known.
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(DOB) 3.2 Nonlinear DOB for Constant Disturbances

1. Consider a class of affine nonlinear systems, depicted by

ẋ = f(x) + g1(x)u+ g2(x)d

y = h(x)

where it is assumed that f(x), g1(x), g2(x), h(x) are smooth functions in terms of x . The distur-
bances under consideration are supposed to be constant but unknown.

2. To estimate the unknown disturbances d , a basic nonlinear DOB is suggested as

˙̂d = l(x)[ẋ� f(x)� g1(x)u� g2(x)d̂]

where d̂ denotes the disturbance estimation vector, and l(x) is the nonlinear gain function.

3. The disturbance estimation error and its time-derivative are obtained as

ed = d̂� d

ėd =
˙̂d� ḋ = l(x)[ẋ� f(x)� g1(x)u� g2(x)d̂]� ḋ = �l(x)g2(x)ed � ḋ

ed(t) ! 0 as t ! 1 if gain l(x) is chosen such that the system is asymptotically stable.

4. It should be pointed out that for implementation of the above disturbance observer, the deriva-
tive of the state is required, which may need an additional sensor for measuring it.
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(DOB) 3.2.2 An Enhanced Formulation

1. An enhanced nonlinear DOB is introduced to estimate the constant disturbance

ż = �l(x)g2(x)[z + p(x)]� l(x)[f(x) + g1(x)u]

d̂ = z + p(x)

where z is the internal state of the nonlinear observer, and p(x) is the nonlinear function to be
designed. Let us determine the nonlinear disturbance observer gain l(x) by

l(x) =
@p(x)

@x
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2. The disturbance estimation error is governed by

ėd =
˙̂d� ḋ

= ż +
@p(x)

@x
ẋ� ḋ = ż + l(x)ẋ� ḋ

=
n
�l(x)g2(x)d̂� l(x)[f(x) + g1(x)u]

o
+ l(x)[f(x) + g1(x)u+ g2(x)d]� ḋ

= �l(x)g2(x)[d̂� d]� ḋ

= �l(x)g2(x)ed � ḋ

where the nonlinear DOB can estimate unknown constant disturbances if the observer gain
l(x) is chosen such that system is asymptotically stable.

3. Numerical example, consider the following nonlinear system with disturbances

ẋ1
ẋ2

�
=


x2
x1x2

�
+


0

1 + sin2 x1

�
u+


0
1

�
d ! ẋ = f(x) + g1(x)u+ g2(x)d

• Suppose that a constant disturbance is imposed on system, i.e., d(t) = 5 for t � 6[s]. The
nonlinear DOB is designed according to the above procedures, p(x) = �x2 and l(x)g2(x) =

[0 �][0 1]T = �, and the composite controller is designed as

u =
�k1x1 � k2x2 � x1x2 � d̂

1 + sin2 x1

where k1 = 10 and k2 = 30.

• It can be observed from the figure that the nonlinear DOB could estimate constant dis-
turbance asymptotically.

• The larger the observer parameter �, the quicker the convergence rate of observer.
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(DOB) 3.3 Nonlinear DOB for General Exogenous Disturbances

1. For given the nonlinear system, the disturbances are supposed to be harmonic ones with
known frequency, but unknown amplitude and phase rather than constant ones.

2. It is supposed that the disturbances are generated by the following exogenous system

⇠̇ = A⇠ d = C⇠

3. The following basic harmonic nonlinear disturbance observer can be employed to estimate the
harmonic disturbances in system

˙̂⇠ = A⇠̂ + l(x)[ẋ� f(x)� g1(x)u� g2(x)d̂] d̂ = C ⇠̂

where ⇠̂ is the internal state variable of observer. For example, if d(t) = sin t, then d̈ + d = 0

with an initial conditions d(0) = 1 and ḋ(0) = 0, and thus we have

d

dt


d
ḋ

�
=


0 1
0 0

� 
d
ḋ

�
! ⇠̇ = A⇠

d =
⇥
1 0

⇤ d
ḋ

�
! d = C⇠

249



4. The observer estimation error and its time-derivative are obtained as

e⇠ = ⇠̂ � ⇠

ė⇠ =
˙̂⇠ � ⇠̇ =

n
A⇠̂ + l(x)[ẋ� f(x)� g1(x)u� g2(x)d̂]

o
� A⇠

= Ae⇠ + l(x)g2(x)(d� d̂)

= Ae⇠ + l(x)g2(x)(C⇠ � C ⇠̂)

= [A� l(x)g2(x)C]e⇠

where ⇠̂(t) approaches to ⇠(t) asymptotically if l(x) is chosen such that [A � l(x)g2(x)C] is
asymptotically stable regardless of x.

5. However, such a basic harmonic nonlinear DOB still meets the problem of implementation for
practical application due to the requirement of the time-derivatives of the states.
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(DOB) 3.3.2 An Enhanced Formulation for Harmonic nonlinear DOB

1. Based on the original version of harmonic nonlinear DOB, an enhanced version is depicted by

ż = [A� l(x)g2(x)C][z + p(x)]� l(x)[f(x) + g1(x)u]

⇠̂ = z + p(x)

d̂ = C ⇠̂
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2. The disturbance estimation error is governed by

ė⇠ =
˙̂⇠ � ⇠̇

= ż +
@p(x)

@x
ẋ� ⇠̇ = ż + l(x)ẋ� ⇠̇

= {[A� l(x)g2(x)C][z + p(x)]� l(x)[f(x) + g1(x)u]}+ l(x)[f(x) + g1(x)u+ g2(x)d]� A⇠

= [A� l(x)g2(x)C]⇠̂ + l(x)g2(x)C⇠ � A⇠

= [A� l(x)g2(x)C](⇠̂ � ⇠)

= [A� l(x)g2(x)C]e⇠

where l(x) should be chosen so that A� l(x)g2(x)C is stable.

3. Suppose that the relative degree from the disturbance to the output, r, is uniformly well-
defined. The nonlinear function p(x) is designed as

p(x) = K
d(r�1)h(x)

dx(r�1)
f(x) = KL(r�1)

f
h(x)

It follows that

l(x) =
@p(x)

@x
= K

@L(r�1)
f

h(x)

@x

4. Reconsider the observation error dynamics

ė⇠ = [A� l(x)g2(x)C]e⇠ =

"
A�K

@L(r�1)
f

h(x)

@x
g2(x)C

#
e⇠ =

h
A�KLg2L

(r�1)
f

h(x)C
i
e⇠
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where Lg2L
(r�1)
f

h(x) can be divided as

Lg2L
(r�1)
f

h(x) = ↵0 + ↵1(x)

in which ↵0(x) belongs to class K function.

5. Check the stability using Lyapunov function:

V (e⇠) = eT
⇠
Pe⇠

V̇ = ėT
⇠
Pe⇠ + eT

⇠
P ė⇠

= eT
⇠
[A�K↵0C �K↵1(x)C]TPe⇠ + eT

⇠
P [A�K↵0C �K↵1(x)C]e⇠

= eT
⇠
[(A�K↵0C)TP + P (A�K↵0C)]e⇠ � 2eT

⇠
PK↵1(x)Ce⇠

where we choose P satisfying

(A�K↵0C)TP + P (A�K↵0C) = �Q PK = CT

then we have

V̇ = �eT
⇠
Qe⇠ � 2eT

⇠
[CT↵1(x)C]e⇠

= �eT
⇠
Qe⇠ � 2(d̂� d)T↵1(x)(d̂� d) < 0

in which the estimation d̂ yielded by harmonic nonlinear DOB converges to the disturbance d

globally exponentially.
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6. For simulation studies, please refer to the numerical data in the textbook.
It can be observed from the figure that the nonlinear DOB could asymptotically estimate the
general exogenous disturbance.
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