
(DOB) 1. Overview of Disturbance Observer

1. Disturbances widely exist in modern industrial control systems and bring adverse effects to
the performance of control systems.

2. Therefore, disturbance rejection is one of the key objectives in controller design.

3. The disturbances refer to not only the disturbances from the external environment of a con-
trol system but also uncertainties from the controlled plant including unmodeled dynamics,
parameter perturbations, and nonlinear couplings of multivariable systems.

4. DOB is utilized for

• the process control community,

• the electrical control community,

• the mechanical control community,

• the aeronautic and astronautic engineering community

5. Several temninologies

• passive antidisturbance control (PADC)

• active antidisturbance control (AADC)

• feedforward control (FC)

• disturbance observer-based control (DOBC)
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(DOB) 1.2 Motivations

1. We start with a simple example to illustrate the major motivation as the following system:

ẋ = �ax+ u+ d

y = x

where u the control input, x the state, y the interested controlled output, a the system param-
eter, and d the disturbance.

2. Let yr the desired value that the output is expected to achieve, which is usually called setpoint

or object value, that is, ẏr = 0.

3. Defining the tracking error variable of the system as ey = yr � y, the error is given by

ey = yr � y

ėy = ẏr � ẏ = 0� [�ay + u+ d] = �a(yr � y)� u� d+ ayr

= �aey � u� d+ ayr

4. The control object here is to design a control law u in terms of the tracking error ey and the
setpoint yr, that is, u = u(ey, yr), such that the actual output y achieves its desired setpoint yr,
that is, the tracking error ey ! 0 as t ! 1

• High-Gain Control

• Integral Control

• DOBC
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(DOB) 1.2.1 High-Gain Control

1. Proportional control is usually utilized to realize the control object,

u = key + ayr

2. The closed-loop system under the proportional control is described by

ėy = �aey � u� d+ ayr = �aey � (key + ayr)� d+ ayr = �(a+ k)ey � d

where k is the proportional gain to be designed.

3. The solution is obtained by multiplying e(a+k)t > 0 and then by integrating from 0 to t:

ėy + (a+ k)ey = �d ! ėye
(a+k)t + (a+ k)eye

(a+k)t = �de(a+k)t

d

dt
[ey(t)e

(a+k)t] = �d(t)e(a+k)t
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213



4. Suppose that the disturbance in the system is bounded and satisfies |d(t)| < d⇤
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|d(⌧)|d⌧

 e�(a+k)t
|ey(0)|+ d⇤
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e�(a+k)(t�⌧)d⌧
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0
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a+ k
[1� e�(a+k)t]

5. Taking the final value of the solution, we have

) |ey(1)| 
d⇤

a+ k

6. It is concluded that proportional control cannot completely remove the effects caused by dis-
turbance (even a constant one) from the systems.

7. In the presence of disturbance, to maintain a smaller tracking offset, a higher control gain k

has to be designed to suppress the disturbance.
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8. Simulation is conducted with a step disturbance d = 2 applied at t = 1[s].

• As shown in the figure, a higher control gain usually generates a faster tracking response
and a smaller offset in the presence of disturbances.

• The results of this simulation scenario demonstrate that there exists a trade-off between
disturbance rejection and reasonable control energy for the high gain control method.
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(DOB) 1.2.2 Integral Control (+ Proportional Control)

1. In practical engineering systems, the integral control action is always employed to remove the

offset in the presence of disturbances and uncertainties.

2. The integral control law is usually designed as

u = k1ey + k0

Z
t

0
ey(⌧)d⌧ + ayr

where k1 and k0 are the proportional and integral gains to be designed, respectively.

3. The closed-loop system is expressed by

ėy = �aey � u� d+ ayr = �aey �


k1ey + k0

Z
t

0
ey(⌧)d⌧ + ayr

�
� d+ ayr = �(a+ k1)ey � k0

Z
t

0
ey(⌧)d⌧ � d

4. Taking time derivatives of both sides gives

) ëy + (a+ k1)ėy + k0ey + ḋ = 0
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5. Let x = [ey, ėy]T , we can get error state-space representation as follow:

d

dt


ey
ėy

�
=


0 1

�k0 �(a+ k1)

� 
ey
ėy

�
+


0
�1

�
ḋ ! ẋ = Ax+Bḋ

6. In the presence of constant disturbance, i.e., ḋ(t) = 0, if A is a Hurwitz matrix, it is derived
from above equation that x(1) = [0, 0]T . This means that the integral control can finally
remove the effects caused by constant disturbance from the system.

7. However, the integral control cannot remove the effects caused by non-constant disturbances,
such as harmonic ones.

8. The solution vector is obtained by multiplying the matrix exponential e�At > 0 and then inte-
grating from 0 to t

ẋ� Ax = Bḋ ! ẋe�At
� Axe�At = Bḋe�At

d

dt
[xe�At] = Bḋe�At
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9. Suppose that the disturbance is non-constant, but bounded and with a bounded derivative,
i.e., |ḋ(t)| < ḋ⇤.
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|x(0)|+ |B|
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0
eA(t�⌧)

|ḋ(⌧)|d⌧

 eAt
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10. Taking limits of both sides yields, since limt!1 eAt = 02⇥2 in the case of a stable system,

) |x(1)|  |A�1B|ḋ⇤

11. It is concluded from above relations that integral control can only remove the offset caused

by constant disturbance. However, in the presence of non-constant disturbances, the integral
control may result in a steady-state tracking error.

12. The integral action always causes undesirable transient control performances, such as larger

overshoot.
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13. Step disturbance d(t) = 2 is applied at t = 10[s] and the harmonic disturbance d(t) = 2+2 sin(t)

is added at t = 20[s].

• In the presence of constant disturbance, the integral control can remove the offset of
the tracking error. However, the integral control is unavailable to reject the harmonic

disturbance.

• The results of this simulation scenario demonstrate that there is a trade-off between
disturbance rejection and tracking performance for the integral control method.
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(DOB) 1.2.3 Disturbance Observer-based Control (DOBC)

1. The high gain control and integral control can be recognized as a PADC method.

2. Different from the high gain control and integral control approaches, DOBC provides an active

and effective way to handle disturbances and improve robustness of the closed-loop system,
which is always considered as an AADC method.

3. The DOBC law is usually designed as

u = key � d̂+ ayr

where k is the control gain, and d̂ is the disturbance estimation by a disturbance observer.

4. The closed-loop system is described by

ėy = �aey � u� d+ ayr = �aey � [key � d̂+ ayr]� d+ ayr = �(a+ k)ey + ed

where ed = d̂� d is the disturbance estimation error.

220



5. By designing an appropriate disturbance observer, the disturbance estimation error ed can be
usually governed by

ėd = f(ed)

which is globally asymptotically stable.
The DO design would be one of the main targets for the DOBC.

6. Compared with the integral control method, the DOBC can compensate not only constant

disturbances but also many other types of disturbances, such as harmonic ones, as long as
they can be accurately estimated by a disturbance observer.
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7. Step disturbance d(t) = 2 at t = 10[s], and Harmonic disturbance d(t) = 2 + 2 sin(t) at t = 20[s].

• As shown in the figure, the DOBC method could reject both constant and harmonic dis-
turbances more promptly as compared with both the proportional control and the integral
control methods, and no excessive control energy is required for disturbance rejection.

• The response curves under the DOBC method are overlapped with those of the baseline
proportional control method, which is called nominal performance recovery.

• The reason for this lies in that the disturbance observer-based compensation serves like
a patch to the baseline proportional control.

• Generally speaking, DOBC could achieve a good disturbance rejection without scarifying
the nominal performance.
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(DOB) 1.3 Basic DOB Framework

1. A basic framework of disturbance observer based control method is shown in the figure.

2. The composite controller consists of two parts: a feedback control part and a feedforward

control part based on a disturbance observer.

• The feedback control is generally employed for tracking and stabilization of the nominal

dynamics of the controlled plant. In this stage, the disturbances and uncertainties are
not necessarily required to be considered.

• The disturbances and uncertainties on controlled plant are estimated by a disturbance

observer and then compensated by a feedforward control.

• The major merit of such design lies in that the feedback control and feedforward designs
satisfy the so-called separation principle, that is, the tracking control performance and the

disturbance rejection performance can be achieved by adjusting the feedback and feedfor-
ward controllers, respectively.

223



3. Promising features of the DOB:

• Faster responses in handling the disturbances:

– As compared with the PADC method, DOBC always achieves a faster dynamic re-

sponse in handling disturbances.
– The reason is that DOBC provides a feedforward compensation term to directly coun-

teract the disturbances in the control systems, while the PADC only rejects the dis-
turbances by passive feedback regulation.

• Patch features:

– The disturbance feedforward compensation term can be considered as a patch to the
existing feedback control.

– The benefit of this is that there is no change to the baseline control, which may have
been widely used and developed for many years, such as PID feedback control, model
predictive control, etc.

– After the baseline feedback control is designed by using the conventional feedback
control techniques, the DO-based compensation is added to improve the robustness
and disturbance attenuation abilities

• Less conservativeness:

– Most of the existing robust control methods are worst-case-based design, where promis-
ing robustness is achieved with the cost of the degraded nominal performance, and
thus have been criticized as being over-conservative.

– The nominal performance of the baseline controller is recovered in the absence of
disturbances or uncertainties, thus a better nominal dynamic performance would be
achieved.
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(DOB) 1.3.1 Frequency Domain Formulation

1. Let us consider a minimum-phase single-input, single-output (SISO) linear system

Y (s) = Gp(s)U(s) +Gp(s)D(s)

=
Gp(s)

1�Q(s)
[C(s)(Yr(s)� Y (s))�Q(s)G�1

n
(s)Y (s)] +Gp(s)D(s)

Gn(s)Y (s) =
Gp(s)

1�Q(s)
[Gn(s)C(s)(Yr(s)� Y (s))�Q(s)Y (s)] +Gn(s)Gp(s)D(s)

(1�Q(s))Gn(s)Y (s) = Gp(s)Gn(s)C(s)Yr(s)�Gp(s)Gn(s)C(s)Y (s)�Gp(s)Q(s)Y (s) + (1�Q(s))Gn(s)Gp(s)D(s)

Thus we have

) Y (s) =
Gp(s)Gn(s)C(s)

(1�Q(s))Gn(s) +Gp(s)Gn(s)C(s) +Gp(s)Q(s)
Yr(s)

+
(1�Q(s))Gp(s)Gn(s)

(1�Q(s))Gn(s) +Gp(s)Gn(s)C(s) +Gp(s)Q(s)
D(s)
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2. Here, the disturbance is supposed to be a low-frequency one, which implies that |D(j!)| is
bounded for a low frequency region 0 < ! < !⇤. For this reason, we can design Q(s) as a
lowpass filter Q(j!) = 1 for low frequencies, then we have

Y (s) ⇡
Gn(s)C(s)

1 +Gn(s)C(s)
Yr(s) + 0 ·D(s) for low frequencies ! ⌧ !⇤

where it implies that the real uncertain closed-loop system under the frequency domain DOBC
behaves as if it is the nominal closed-loop system in the absence of disturbance, which is also
referred to as the nominal performance recovery.

3. On the other hand, for high frequencies, Q(j!) = 0,

Y (s) ⇡
Gp(s)C(s)

1 +Gp(s)C(s)
Yr(s) +

Gp(s)

1 +Gp(s)C(s)
D(s) for high frequencies ! � !⇤

where it acts like an actual plant without Q-filter for high frequencies.

4. Read TAC paper “On the robustness and performance of disturbance observers for second-
order systems”
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(DOB) 1.3.2 Time Domain DOBC Formulation

1. Consider a multi-input multi-output (MIMO) linear system with disturbances,

ẋ = Ax+Bu+Bd

y = Cx

2. Suppose that the disturbances and their derivatives are bounded and tend to some constants
as time goes to infinity, that is,

lim
t!1

ḋ(t) = 0 and lim
t!1

d(t) = ds

where ds is a constant vector.
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3. The following time domain disturbance observer can be employed to estimate the disturbances
in system

ż = �LB(z + Lx)� L(Ax+Bu)

d̂ = z + Lx

where d̂ the disturbance estimation vector, z the internal variable vector of the observer, and
L the observe gain matrix to be designed.

4. Under the time domain framework of DOBC, the control law is generally designed as

u = Kx� d̂

where K is the feedback control gain to be designed.

5. The disturbance estimation error is defined as ed = d̂� d

6. The closed-loop system is governed by

ẋ = Ax+Bu+Bd = Ax+B(Kx� d̂) + Bd = (A+BK)x� Bed

ėd =
˙̂d� ḋ = ż + Lẋ� ḋ = �LB(z + Lx)� L(Ax+Bu) + Lẋ� ḋ = �LBd̂+ LBd� ḋ

= �LBed � ḋ

where the closed-loop system is asymptotically stable with appropriately chosen parameters
K and L, such that A+BK and �LB are Hurwitz.

228


