
5 Control Law Design for Full-State Feedback
• The purpose of the control law is to allow us to assign a set of pole locations for the closed-loop

system that will correspond to satisfactory dynamic response in terms of rise time and other mea-
sures of transient response.

• If the full state is not available, the next step is to design an estimator (sometimes called an ob-
server), which computes an estimate of the entire state vector when provided with the measure-
ment of the system.

• The third step consists of combining the control law and the estimator. See Fig. 7.11

• The final step is to introduce the reference input in such a way that the plant output will track
external commands with acceptable rise-time, overshoot, and settling-time values.
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• (7.5.1) Finding the Control Law

1. The control law is defined as feedback of a linear combination of the state variables

u = �Kx = �

h
K1 K2 · · · Kn

i

2

666664

x1

x2
...
xn

3

777775

where it is called “full-state feedback”
2. The closed-loop system under above control becomes

ẋ = Ax+Bu

= Ax� BKx

= (A� BK)x

3. The characteristic equation of the closed-loop system is

det[sI � A+BK] = 0

4. If the desired characteristic equation is given as following form, then the required elements
of K are obtained by matching both equations:

↵c(s) = (s� s1)(s� s2) · · · (s� sn) = det[sI � A+BK]

where s1, s2, · · · , sn are the desired poles locations.
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5. (Example 7.14) Find the control law that places the closed-loop poles of the system so that
they are both at �2!o.
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Let us apply the control law

u = �

h
K1 K2

i "x1
x2

#

Then the desired characteristic equation should be equal to ↵c(s) = (s+ 2!o)2

det[sI � A+BK] = det

("
s 0

0 s

#
�

"
0 1

�!2
o 0

#
+

"
0

1

# h
K1 K2

i)

= s2 +K2s+K1 + !2
o = s2 + 4!os+ 4!2

o = ↵c(s)

By comparing both sides, we have

) K2 = 4!o K1 = 3!2
o
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6. Using the control canonical form (CCF): consider the following TF

Y (s)

U(s)
=

b1sn�1 + b2sn�2 + · · ·+ bn
sn + a1sn�1 + a2 + sn�2 + · · ·+ an

X(s)

X(s)

Then we have

U(s) = (sn + a1s
n�1 + a2 + sn�2 + · · ·+ an)X(s) = snX(s) + a1s

n�1X(s) + · · ·+ anX(s)

Y (s) = (b1s
n�1 + b2s

n�2 + · · ·+ bn)X(s) = b1s
n�1X(s) + · · ·+ bnX(s)

Let us define the states as follows:

xn = X(s)

xn�1 = sX(s) ẋn = xn�1

xn�2 = s2X(s) ẋn�1 = xn�2

...

x2 = sn�2X(s) ẋ3 = x2

x1 = sn�1X(s) ẋ2 = x1

ẋ1 = snX(s) = �a1s
n�1X(s)� · · ·� anX(s) + U(s) ẋ1 = �a1x1 � a2x2 � · · ·� anxn + u

y = b1s
n�1X(s) + · · ·+ bnX(s) y = b1x1 + b2x2 + · · ·+ bnxn
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Ac =

2

66666664

�a1 �a2 · · · · · · �an

1 0 · · · · · · 0

0 1 0 · · · 0
... . . . 0

...
0 0 · · · 1 0

3

77777775

Bc =

2

66666664

1

0

0
...
0

3

77777775

Cc =
h
b1 b2 · · · · · · bn

i
Dc = 0
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7. Determinant of sI � Ac +BcKc is obtained as

det(sI � Ac +BcKc) = det

8
>>>>>>><

>>>>>>>:

sI �

2

66666664

�a1 �a2 · · · · · · �an

1 0 · · · · · · 0

0 1 0 · · · 0
... . . . 0

...
0 0 · · · 1 0
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0

0
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0

3
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h
K1 K2 K3 · · · Kn

i

9
>>>>>>>=

>>>>>>>;

= det

2

66666664

s+ a1 +K1 a2 +K2 · · · · · · an +Kn

�1 s · · · · · · 0

0 �1 s · · · 0
... . . . s

...
0 0 · · · �1 s

3

77777775

= sn + (a1 +K1)s
n�1 + (a2 +K2)s

n�2 + · · ·+ (an +Kn)
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8. If the desired pole locations result in the characteristic equation given by

↵c(s) = sn + ↵1s
n�1 + ↵2s

n�2 + · · ·+ ↵n

then the control gains can be found as follows:

K1 = ↵1 � a1

K2 = ↵2 � a2
...

Kn = ↵n � an

9. For given any A and B matrices, Ackermann’s formula provides easy way to solve the control
gain problem:

K =
h
0 0 · · · 0 1

i
C
�1↵c(A)

where the controllability matrix C and ↵c(A)

C =
h
B AB A2B · · · An�1B

i

↵c(A) = An + ↵1A
n�1 + ↵2A

n�2 + · · ·+ ↵nI

in which ↵i are the coefficients of the desired characteristic polynomial.
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10. (Example 7.15) Find the control law that places the closed-loop poles of the system so that
they are both at �2!o. Use Ackermann’s fomula.
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First step is to construct ↵c(s)

↵c(s) = (s+ 2!o)
2 = s2 + 4!os+ 4!2

o

Second step

↵c(A) = A2 + 4!oA+ 4!2
oI
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Third step is to find the controllability matrix C

C =
h
B AB

i
=

"
0 1

1 0

#
! C

�1 =

"
0 1

1 0

#

Final step is to find the gain matrix

) K =
h
0 1

i
C
�1↵c(A)

=
h
3!2

o 4!o

i
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11. Uncontrollable systems have certain modes, or subsystems, that are unaffected by the con-
trol. This usually means that parts of the system are physically disconnected from the in-
put. It can be checked from the rank of the controllability matrix. In other words, the system
having any uncontrollable mode loses rank of the controllability matrix. For example,

G(s) =
s+ zo

(s+ 3)(s+ 4)

if zo = 3 or 4, then the controllability matrix loses rank.
12. On the other hand, if zo = 2.99, the controllability must be full, but it requires larger gain

such as K = [2052.5,�688.1]. (It is called weakly controllable)
– The system has to work harder and harder to achieve control as controllability slips away.
– To move the poles a long way requires large gains.

• (Example 7.16)
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