4 Analysis of the State Equations

- (7.4.1) Block Diagrams and Canonical Forms

1. Control canonical form shown in Fig. 7.7 has a feature that each state-variable feeds back to the control input u, through the coefficients of the system matrix A_{c}. Consider the following

TF:

$$
G(s)=\frac{Y(s)}{U(s)}=\frac{s+2}{s^{2}+7 s+12} \quad \rightarrow \quad G(s)=\frac{Y(s)}{U(s)}=\frac{s+2}{s^{2}+7 s+12} \frac{X(s)}{X(s)}
$$

From above, we know that

$$
\begin{array}{ll}
Y(s)=(s+2) X(s) & y=\dot{x}+2 x \\
U(s)=\left(s^{2}+7 s+12\right) X(s) & u=\ddot{x}+7 \dot{x}+12 x
\end{array}
$$

Let us assign the states $x_{1}=\dot{x}$ and $x_{2}=x$ as follows:

$$
\begin{aligned}
y & =x_{1}+2 x_{2} \\
\dot{x}_{2} & =\dot{x}=x_{1} \\
\dot{x}_{1} & =-7 \dot{x}-12 x+u=-7 x_{1}-12 x_{2}+u
\end{aligned}
$$

These three equations can then be rewritten in the matrix form:

$$
\begin{aligned}
\dot{x} & =A_{c} x+B_{c} u \\
y & =C_{c} x+D_{c} x
\end{aligned}
$$

where

$$
A_{c}=\left[\begin{array}{cc}
-7 & -12 \\
1 & 0
\end{array}\right] \quad B_{c}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad C_{c}=\left[\begin{array}{ll}
1 & 2
\end{array}\right] \quad D_{c}=0
$$

where the subscript c refers to control canonical form.

General control canonical form: consider the following TF

$$
G(s)=\frac{b_{1} s^{n-1}+b_{2} s^{n-2}+\cdots+b_{n}}{s^{n}+a_{1} s^{n-1}+a_{2}+s^{n-2}+\cdots+a_{n}}
$$

Then we have

$$
\begin{aligned}
A_{c} & =\left[\begin{array}{ccccc}
-a_{1} & -a_{2} & \cdots & \cdots & -a_{n} \\
1 & 0 & \cdots & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
\vdots & & \ddots & 0 & \vdots \\
0 & 0 & \cdots & 1 & 0
\end{array}\right] \\
C_{c} & =\left[\begin{array}{lllll}
b_{1} & b_{2} & \cdots & \cdots & b_{n}
\end{array}\right]
\end{aligned} B_{c}=\left[\begin{array}{c}
1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

2. Modal canonical form shown in Fig 7.8 has a feature that the system poles appear in the diagonal of the system matrix A_{m}. Consider the TF

$$
\begin{aligned}
G(s) & =\frac{s+2}{s^{2}+7 s+12}=\frac{2}{s+4}+\frac{-1}{s+3} \quad \rightarrow \quad G=2 G_{1}+(-1) G_{2} \\
G_{1} & =\frac{Z_{1}(s)}{U(s)}=\frac{1}{s+4} \quad \text { and } \quad G_{2}=\frac{Z_{2}(s)}{U(s)}=\frac{1}{s+3}
\end{aligned}
$$

let us obtain the state-space equations:

$$
\begin{aligned}
y & =2 z_{1}-z_{2} \\
\dot{z}_{1} & =-4 z_{1}+u \\
\dot{z}_{2} & =-3 z_{2}+u
\end{aligned}
$$

then the modal canonical form is easily obtained as

$$
\begin{array}{rlrl}
{\left[\begin{array}{l}
\dot{z}_{1} \\
\dot{z}_{2}
\end{array}\right]} & =\left[\begin{array}{cc}
-4 & 0 \\
0 & -3
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]+\left[\begin{array}{l}
1 \\
1
\end{array}\right] u & \dot{z}=A_{m} z+B_{m} u \\
y & =\left[\begin{array}{ll}
2 & -1
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]+0 \cdot u & y=C_{m} z+D_{m} u
\end{array}
$$

where the subscript m refers to modal canonical form. Modes represent the poles (or eigenvalues) of the given system. Note that the complex poles appear along the diagonal with offdiagonal terms indicating the coupling.
3. (Example) Find the modal form of the TF

$$
G(s)=\frac{2 s+4}{s^{2}\left(s^{2}+2 s+4\right)}
$$

By taking the partial fraction method, we have
$G(s)=\frac{1}{s^{2}}+\frac{-1}{s^{2}+2 s+4} \quad \rightarrow \quad G=G_{1}+(-1) G_{2} \quad \rightarrow \quad G_{1}=\frac{Z_{2}(s)}{U(s)}=\frac{1}{s^{2}} \quad$ and $\quad G_{2}=\frac{Z_{4}(s)}{U(s)}=\frac{1}{s^{2}+2 s+4}$
let us obtain the state-space equations:

$$
\begin{aligned}
y & =z_{2}-z_{4} \\
\dot{z}_{1} & =u \\
\dot{z}_{2} & =z_{1} \\
\dot{z}_{3} & =-2 z_{3}-4 z_{4}+u \\
\dot{z}_{4} & =z_{3}
\end{aligned}
$$

then the modal form is obtained as shown in the following figure

$$
\begin{aligned}
{\left[\begin{array}{l}
\dot{z}_{1} \\
\dot{z}_{2} \\
\dot{z}_{3} \\
\dot{z}_{4}
\end{array}\right] } & =\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & -2 & -4 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3} \\
z_{4}
\end{array}\right]+\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right] u \\
y & =\left[\begin{array}{llll}
0 & 1 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3} \\
z_{4}
\end{array}\right]+0 \cdot u
\end{aligned}
$$

4. (Example 7.8)
5. Consider a system described by the state equation:

$$
\begin{aligned}
\dot{x} & =A x+B u \\
y & =C x+D u
\end{aligned}
$$

where it is noted that the state space description is not unique. For a nonsingular transformation matrix T, if we let

$$
x=T z \quad \rightarrow \quad \dot{x}=T \dot{z} \quad \rightarrow \quad z=T^{-1} x
$$

then we have

$$
\begin{array}{rlrl}
T \dot{z} & =A T z+B u & \dot{z} & =\bar{A} z+\bar{B} u \\
y & =C T z+D u & y & =\bar{C} z+\bar{D} u
\end{array}
$$

where

$$
\bar{A}=T^{-1} A T \quad \bar{B}=T^{-1} B \quad \bar{C}=C T \quad \bar{D}=D
$$

In order to find the control canonical form, first, let us consider the following equation:

$$
\bar{A} T^{-1}=T^{-1} A
$$

If \bar{A} is in control canonical form, and we describe T^{-1} as a matrix with row vectors t_{1}, t_{2}, t_{3},
then

$$
\left[\begin{array}{ccc}
-a_{1} & -a_{2} & -a_{3} \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
t_{1} \\
t_{2} \\
t_{3}
\end{array}\right]=\left[\begin{array}{l}
t_{1} \\
t_{2} \\
t_{3}
\end{array}\right] A=\left[\begin{array}{c}
t_{1} A \\
t_{2} A \\
t_{3} A
\end{array}\right] \quad \rightarrow \quad \therefore \quad t_{2}=t_{3} A \quad \text { and } \quad t_{1}=t_{2} A=t_{3} A^{2}
$$

second,

$$
T^{-1} B=\bar{B} \quad \rightarrow \quad\left[\begin{array}{l}
t_{1} B \\
t_{2} B \\
t_{3} B
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \quad \rightarrow \quad \therefore \quad t_{3} B=0 \quad t_{2} B=t_{3} A B=0 \quad t_{1} B=t_{3} A^{2} B=1
$$

These equations can, in turn, be written in matrix form as

$$
t_{3}\left[\begin{array}{lll}
B & A B & A^{2} B
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right] \quad \rightarrow \quad t_{3}=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right] \mathcal{C}^{-1}
$$

where the controllability matrix $\mathcal{C}=\left[\begin{array}{lll}B & A B & A^{2} B\end{array}\right]$. And furthermore, since $t_{2}=t_{3} A$ and $t_{1}=t_{3} A^{2}$, we can construct all the rows of T^{-1}

- When the controllability matrix \mathcal{C} is nonsingular, the corresponding A and B matrices are said to be controllable.
- One can always transform a given state description to control canonical form if and only if the controllability matrix \mathcal{C} is nonsingular.
- Pole-zero cancellation in the TF brings that the controllability loses its rank.
- Controllability is a function of the state of the system and cannot be decided from a TF.

6. Observer canonical form is obtained by transposing the system matrix

$$
A_{o}=A_{c}^{T} \quad B_{o}=C_{c}^{T} \quad C_{o}=B_{c}^{T} \quad D_{o}=D_{c}
$$

for example, from the following control canonical form,

$$
\begin{aligned}
& \dot{x}=A_{c} x+B_{c} u \\
& y=C_{c} x+D_{c} u
\end{aligned}
$$

where

$$
A_{c}=\left[\begin{array}{cc}
-7 & -12 \\
1 & 0
\end{array}\right] \quad B_{c}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad C_{c}=\left[\begin{array}{ll}
1 & 2
\end{array}\right] \quad D_{c}=0
$$

we can get the observer canonical from as follows:

$$
\begin{aligned}
& \dot{x}=A_{o} x+B_{o} u \\
& y=C_{o} x+D_{o} u
\end{aligned}
$$

where

$$
A_{o}=\left[\begin{array}{cc}
-7 & 1 \\
-12 & 0
\end{array}\right] \quad B_{o}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \quad C_{o}=\left[\begin{array}{ll}
1 & 0
\end{array}\right] \quad D_{o}=0
$$

7. In order to find the modal form, we assume that the system has only distinct poles. Consider

$$
\begin{aligned}
T \bar{A} & =A T \\
{\left[\begin{array}{lll}
t_{1} & t_{2} & t_{3}
\end{array}\right]\left[\begin{array}{ccc}
p_{1} & 0 & 0 \\
0 & p_{2} & 0 \\
0 & 0 & p_{3}
\end{array}\right] } & =A\left[\begin{array}{lll}
t_{1} & t_{2} & t_{3}
\end{array}\right]
\end{aligned}
$$

where t_{1}, t_{2}, t_{3} are column vectors of the transformation matrix T. Above equation is equivalent to the three vector-matrix equations:

$$
p_{i} t_{i}=A t_{i} \quad i=1,2,3 \quad \rightarrow \quad\left(A-p_{i} I\right) t_{i}=0
$$

where it is equal to the eigenvalue and eigenvector problems. In other words, p_{i} is given eigenvalues and t_{i} is a corresponding eigenvector.
8. (Example 7.9) Find the matrix to transform the control canonical form of Eq. 7.12 into the modal form of Eq. 7.14 in the textbook?

$$
\begin{array}{lll}
A_{c}=\left[\begin{array}{cc}
-7 & -12 \\
1 & 0
\end{array}\right] & B_{c}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] & C_{c}=\left[\begin{array}{ll}
1 & 2
\end{array}\right]
\end{array} D_{c}=0
$$

For $p_{1}=-4$,

$$
-4\left[\begin{array}{l}
t_{11} \\
t_{21}
\end{array}\right]=\left[\begin{array}{cc}
-7 & -12 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
t_{11} \\
t_{21}
\end{array}\right] \quad \rightarrow \quad t_{11}=-4 t_{21}
$$

For $p_{1}=-3$,

$$
-3\left[\begin{array}{l}
t_{12} \\
t_{22}
\end{array}\right]=\left[\begin{array}{cc}
-7 & -12 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
t_{12} \\
t_{22}
\end{array}\right] \quad \rightarrow \quad t_{12}=-3 t_{22}
$$

If we choose $t_{21}=-1$ and $t_{22}=1$, then we have

$$
T=\left[\begin{array}{cc}
4 & -3 \\
-1 & 1
\end{array}\right]
$$

Thus we can know that

$$
\begin{aligned}
A_{m} & =T^{-1} A_{c} T \\
C_{m} & =C_{c} T
\end{aligned}
$$

$$
\begin{aligned}
B_{m} & =T^{-1} B_{c} \\
D_{m} & =D_{c}
\end{aligned}
$$

9. (Example 7.10)
