4 Analysis of the State Equations

e (7.4.1) Block Diagrams and Canonical Forms

1. Control canonical form shown in Fig. 7.7 has a feature that each state-variable feeds back to
the control input u, through the coefficients of the system matrix A.. Consider the following
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TF:
_Y(s)  s+2 _Y(s)  s+2  X(s)
G(s)_U(s)_32+73+12 ” G(S)_U(s)_32—|—7s—|—12X(s)
From above, we know that
Y(s)=(s+2)X(s) Y=+ 2x
U(s) = (s* + 75+ 12) X () =i+ 7%+ 12z
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Let us assign the states x1 = & and x9 = x as follows:

Yy =x1 + 279
.ijZZ.C:xl

T1=—-Tr—122+u=—Tr; — 1209+ u
These three equations can then be rewritten in the matrix form:

= A.x + B.u
y=C.ax+ D.x

where

-7 _12] BCF] Cc:[l 2} D, =0
10 0

where the subscript ¢ refers to control canonical form.
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General control canonical form: consider the following TF

b1s" L+ bys" 24 b,

G(s) =
Then we have

_—al —0/2 ......
1 0 oo ...

Ac=1 0 1 0
0
00 1
C. = [bl by v - bn:|

s+ ars" Fay+ 5724+ ay
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2. Modal canonical form shown in Fig 7.8 has a feature that the system poles appear in the
diagonal of the system matrix A,,. Consider the TF

U 0— 5 4 % SN ——t Y
+ j f
—4
+ 2] 1 |2, J o
N
) j
-3
54+ 2 2 —1
G(s) = = G =2G -1)G
(5) s2 4+ Ts+ 12 s+4+s—|—3 ~ 1+ (=16
Z1(s) 1 Zs(s) 1
YT UG sra 2T TUls)  s+3

let us obtain the state-space equations:

y:221—22
21:—421+U

22 = —322 +u
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then the modal canonical form is easily obtained as

4 [-4 o] [a 1 ,
= - U z=A,,z+ Bu
22 | 0 -3 29 1
] %
y=|2 —1} +0-u y=Cpnz+ Dyu
I 2

where the subscript m refers to modal canonical form. Modes represent the poles (or eigen-
values) of the given system. Note that the complex poles appear along the diagonal with off-
diagonal terms indicating the coupling.
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3. (Example) Find the modal form of the TF

G(s

)_

2s+4

By taking the partial fraction method, we have

- 52(s2 4 25+ 4)

1 —1 ZQ(S)
Gs)=+—5—F— — G=GC -1)Gy — Gy =
(s) 82+82—|—28+4 1 (216G ! U(s)
let us obtain the state-space equations:
Yy==22—2
21 =U
22 = 21
23 = —2z3 — 4z +u
24 = 23

then the modal form is obtained as shown in the following figure

X
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A1 foo o ol ] |
> 10 0 O 0
2 2 + U 2= A,z + Bhu
Z3 0 0 —2 —4]| |23 1
24 00 1 0 24 0
<1
)
y:{o 10 —1] +0-u y=Cphz+ D,u
Z3
<4

4. (Example 7.8)
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5. Consider a system described by the state equation:

t = Ax + Bu
y=Cz+ Du

where it is noted that the state space description is not unique. For a nonsingular transfor-
mation matrix 7, if we let

=Tz — z=1Tz — =T 1z
then we have
Tz= ATz + Bu = Az + Bu
y=CTz+ Du y=Cz+ Du
where
A=TTAT B=T"'B C=CT D=D

In order to find the control canonical form, first, let us consider the following equation:
AT 1 =T714

If A is in control canonical form, and we describe 7' as a matrix with row vectors ¢y, to, t3,
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then

—ayp —ag —Aas tl tl tlA
1 0 0 tol = |t9 A= tQA — to = tgA and t1 = tQA = t3A2
0 1 0 t3 t3 t3A
second,
t1B 1
T7'B=B = Bl = |0 — 5. 13B=0 t,B=t3;AB=0 t;B=1t3A’B=1
t3B 0

These equations can, in turn, be written in matrix form as
ts|B AB A%B|=lo01] = =00 1]c?

where the controllability matrix C = [B AB A? B}. And furthermore, since ¢, = {34 and
t; = t3A%, we can construct all the rows of 7!
— When the controllability matrix C is nonsingular, the corresponding A and B matrices
are said to be controllable.

— One can always transform a given state description to control canonical form if and only
if the controllability matrix C is nonsingular.

— Pole-zero cancellation in the TF brings that the controllability loses its rank.
— Controllability is a function of the state of the system and cannot be decided from a TF.
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6. Observer canonical form is obtained by transposing the system matrix

A,=A'  B,=c' C,=B' D,=D,

Cc

for example, from the following control canonical form,

= A.x + B.u
y=C.ax+ D.u

where

we can get the observer canonical from as follows:

= A,x + Byu
y=Cyx+ Dyu
where
-7 1 1
A, = B, = Q:ho} D, =0
—12 0 2
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7. In order to find the modal form, we assume that the system has only distinct poles. Consider

TA=AT
pr 0 0
[tl to tg] 0 po O =A[t1 to tg}
0 0 p3

where t1,t5,t3 are column vectors of the transformation matrix 7. Above equation is equiva-
lent to the three vector-matrix equations:

where it is equal to the eigenvalue and eigenvector problems. In other words, p; is given
eigenvalues and ¢; is a corresponding eigenvector.
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8. (Example 7.9) Find the matrix to transform the control canonical form of Eq. 7.12 into the
modal form of Eq. 7.14 in the textbook?

7 _12 1
A, = B, =
1 0 0

CC:[1 2} D.=0

—4 0 1
A, = B,, = Cm:[z 1} D, =0
0 -3 1
For p, = —4,
t -7 —=12| |t
4| M = H — t11 = —4ty
to1 1 0 o1
For p, = -3,
t =7 —=12| |t
3| = 2 — t12 = —3t2
If we choose ty; = —1 and ¢y = 1, then we have

T:
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Thus we can know that

A, =T 1AT B, =T 'B,
Cm = CCT D, =D,

9. (Example 7.10)
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