
4 Analysis of the State Equations
• (7.4.1) Block Diagrams and Canonical Forms

1. Control canonical form shown in Fig. 7.7 has a feature that each state-variable feeds back to
the control input u, through the coefficients of the system matrix Ac. Consider the following

TF:

G(s) =
Y (s)

U(s)
=

s+ 2

s2 + 7s+ 12
! G(s) =

Y (s)

U(s)
=

s+ 2

s2 + 7s+ 12

X(s)

X(s)

From above, we know that

Y (s) = (s+ 2)X(s) y = ẋ+ 2x

U(s) = (s2 + 7s+ 12)X(s) u = ẍ+ 7ẋ+ 12x

110



Let us assign the states x1 = ẋ and x2 = x as follows:

y = x1 + 2x2

ẋ2 = ẋ = x1

ẋ1 = �7ẋ� 12x+ u = �7x1 � 12x2 + u

These three equations can then be rewritten in the matrix form:

ẋ = Acx+Bcu

y = Ccx+Dcx

where

Ac =

"
�7 �12

1 0

#
Bc =

"
1

0

#
Cc =

h
1 2

i
Dc = 0

where the subscript c refers to control canonical form.
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General control canonical form: consider the following TF

G(s) =
b1sn�1 + b2sn�2 + · · ·+ bn

sn + a1sn�1 + a2 + sn�2 + · · ·+ an

Then we have

Ac =

2

66666664

�a1 �a2 · · · · · · �an

1 0 · · · · · · 0

0 1 0 · · · 0
... . . . 0

...
0 0 · · · 1 0

3

77777775

Bc =

2

66666664

1

0

0
...
0

3

77777775

Cc =
h
b1 b2 · · · · · · bn

i
Dc = 0
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2. Modal canonical form shown in Fig 7.8 has a feature that the system poles appear in the
diagonal of the system matrix Am. Consider the TF

G(s) =
s+ 2

s2 + 7s+ 12
=

2

s+ 4
+

�1

s+ 3
! G = 2G1 + (�1)G2

G1 =
Z1(s)

U(s)
=

1

s+ 4
and G2 =

Z2(s)

U(s)
=

1

s+ 3

let us obtain the state-space equations:

y = 2z1 � z2

ż1 = �4z1 + u

ż2 = �3z2 + u
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then the modal canonical form is easily obtained as

"
ż1

ż2

#
=

"
�4 0

0 �3

#"
z1

z2

#
+

"
1

1

#
u ż = Amz +Bmu

y =
h
2 �1

i "z1
z2

#
+ 0 · u y = Cmz +Dmu

where the subscript m refers to modal canonical form. Modes represent the poles (or eigen-
values) of the given system. Note that the complex poles appear along the diagonal with off-
diagonal terms indicating the coupling.
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3. (Example) Find the modal form of the TF

G(s) =
2s+ 4

s2(s2 + 2s+ 4)

By taking the partial fraction method, we have

G(s) =
1

s2
+

�1

s2 + 2s+ 4
! G = G1 + (�1)G2 ! G1 =

Z2(s)

U(s)
=

1

s2
and G2 =

Z4(s)

U(s)
=

1

s2 + 2s+ 4

let us obtain the state-space equations:

y = z2 � z4

ż1 = u

ż2 = z1

ż3 = �2z3 � 4z4 + u

ż4 = z3

then the modal form is obtained as shown in the following figure
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2

666664

ż1

ż2

ż3

ż4

3

777775
=

2

666664

0 0 0 0

1 0 0 0

0 0 �2 �4

0 0 1 0

3

777775

2

666664

z1

z2

z3

z4

3

777775
+

2

666664

1

0

1

0

3

777775
u ż = Amz +Bmu

y =
h
0 1 0 �1

i

2

666664

z1

z2

z3

z4

3

777775
+ 0 · u y = Cmz +Dmu

4. (Example 7.8)
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5. Consider a system described by the state equation:

ẋ = Ax+Bu

y = Cx+Du

where it is noted that the state space description is not unique. For a nonsingular transfor-
mation matrix T , if we let

x = Tz ! ẋ = T ż ! z = T�1x

then we have

T ż = ATz +Bu ż = Az +Bu

y = CTz +Du y = Cz +Du

where

A = T�1AT B = T�1B C = CT D = D

In order to find the control canonical form, first, let us consider the following equation:

AT�1 = T�1A

If A is in control canonical form, and we describe T�1 as a matrix with row vectors t1, t2, t3,
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then
2

664

�a1 �a2 �a3

1 0 0

0 1 0

3

775

2

664

t1

t2

t3

3

775 =

2

664

t1

t2

t3

3

775A =

2

664

t1A

t2A

t3A

3

775 ! ) t2 = t3A and t1 = t2A = t3A
2

second,

T�1B = B !

2

664

t1B

t2B

t3B

3

775 =

2

664

1

0

0

3

775 ! ) t3B = 0 t2B = t3AB = 0 t1B = t3A
2B = 1

These equations can, in turn, be written in matrix form as

t3
h
B AB A2B

i
=

h
0 0 1

i
! t3 =

h
0 0 1

i
C
�1

where the controllability matrix C =
h
B AB A2B

i
. And furthermore, since t2 = t3A and

t1 = t3A2, we can construct all the rows of T�1

– When the controllability matrix C is nonsingular, the corresponding A and B matrices
are said to be controllable.

– One can always transform a given state description to control canonical form if and only
if the controllability matrix C is nonsingular.

– Pole-zero cancellation in the TF brings that the controllability loses its rank.
– Controllability is a function of the state of the system and cannot be decided from a TF.
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6. Observer canonical form is obtained by transposing the system matrix

Ao = AT
c Bo = CT

c Co = BT
c Do = Dc

for example, from the following control canonical form,

ẋ = Acx+Bcu

y = Ccx+Dcu

where

Ac =

"
�7 �12

1 0

#
Bc =

"
1

0

#
Cc =

h
1 2

i
Dc = 0

we can get the observer canonical from as follows:

ẋ = Aox+Bou

y = Cox+Dou

where

Ao =

"
�7 1

�12 0

#
Bo =

"
1

2

#
Co =

h
1 0

i
Do = 0
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7. In order to find the modal form, we assume that the system has only distinct poles. Consider

TA = AT

h
t1 t2 t3

i
2

664

p1 0 0

0 p2 0

0 0 p3

3

775 = A
h
t1 t2 t3

i

where t1, t2, t3 are column vectors of the transformation matrix T . Above equation is equiva-
lent to the three vector-matrix equations:

piti = Ati i = 1, 2, 3 ! (A� piI)ti = 0

where it is equal to the eigenvalue and eigenvector problems. In other words, pi is given
eigenvalues and ti is a corresponding eigenvector.
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8. (Example 7.9) Find the matrix to transform the control canonical form of Eq. 7.12 into the
modal form of Eq. 7.14 in the textbook?

Ac =

"
�7 �12

1 0

#
Bc =

"
1

0

#
Cc =

h
1 2

i
Dc = 0

Am =

"
�4 0

0 �3

#
Bm =

"
1

1

#
Cm =

h
2 1

i
Dm = 0

For p1 = �4,

�4

"
t11

t21

#
=

"
�7 �12

1 0

#"
t11

t21

#
! t11 = �4t21

For p1 = �3,

�3

"
t12

t22

#
=

"
�7 �12

1 0

#"
t12

t22

#
! t12 = �3t22

If we choose t21 = �1 and t22 = 1, then we have

T =

"
4 �3

�1 1

#
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Thus we can know that

Am = T�1AcT Bm = T�1Bc

Cm = CcT Dm = Dc

9. (Example 7.10)
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