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State-Space Design
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e Third major method of designing feedback control systems: the STATE-SPACE method.
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1 Advantages of State-Space

e State-space control design is the technique in which the control engineer designs a dynamic com-
pensation by working directly with the state-variable description of the system.

e Ordinary differential equations (ODEs) of physical dynamic systems can be manipulated into
state-variable form.

o ATAolo]E vs LA o0&

- 117 Alojo|& (transform method) - A, AlEW, GLdUYH-dLdE A"t A8, =2 Fo}

S Aoy e 2AAEoR Aof7] 4

— A A|ojo]= (state-space method) - A3 or H|AY, A|EH or AW, th=dE-Th4E8 A AH Y
T g F2 AT dEHoR Aol AA

- e (state) - & A|AHY] AEj=t =
2 Eat=lic) 7450 9}7‘4 Sl 449 4 A= ), old
- ”EH 4= (state variable) - =& A|AEIO] Alg]
2ejHes 245 4 A B2 4 9l 3 1ot gt
state variables: position (potential energy), velocity (kinetic energy), capacity voltage (electric
energy), inductor current (magnetic energy), thermal temperature (thermal energy)
- /JHHE (state vector) - 0|1 A|ARIS] AFE FHSH] 9ol noll Ei47F s, nf
A= HEHE AAD 4 A=, ozt HMEE e et qt

-7k %}79, 2] (state-space equation) - &-&]
2ol 3x2 8 LA, A|AH 0] A7t BE o
St Al AHS] FEAS 26| AT 5= = Ao = A A" 2otE HE 7] o] =2 Fdstt

Ol 1 o2
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2 System Descriptions in State-Space

e The motion of any finite dynamic system can be expressed as a set of first-order ODEs.

e (Example 7.1) Consider Fig. 2.8 in the textbook with M, = 0, we have the attitude problem of
the satellite.

Inertial
reference
jon, Al Rights Reserv

10 = F.d w=F. Y =0
Let us assign states as follows:
r1 =10 Ty = 0
Take the time derivatives
i =0 =z iy =0 =-u
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Let us obtain state-variable equation as the vector equation:

1 0 1| [z 0
= —|— U

I9 0 0 I9 %l

= Ax + Bu
and the output equation is

Iy

Yy = [1 O} +0-u
L2
y=Czx+ Du

where the state vector is defined as

and A is called a system matrix, B an input matrix, C' an output matrix, and D a direct trans-
mission term.
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e (Example 7.2) Consider Figs. 2.1 and 2.2, the automotive cruise model is obtained as

Friction
force bx

mi = u — bx — mi +br =u y=x
Let us assign states as follows:
T =2 Tog =1

Take the time derivatives

: : L. b. 1 b 1
T =T = T2 Tg =T =——T+—U=——Ty+ —U
m m m m

Let us obtain state-variable equation as the vector equation:

.fl 0 1 1 0 1
- b Tl y:[l O} U

W) 0 ~m I9 m I9

= Ax + Bu y=Cx+ Du
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e (Example) Consider Fig. 2.26 in the textbook, the bridged tee circuit model is obtained as

C2
=
I
R R
@® IR Oy ©,

Ol

O
U2 — U U2 U2 — Vo Vo — U Vo — V2
+ + =0 + =0
Rl 1/(018) R2 1/(028) R2
If we take differential equation form, then we have
Vg — U; dvy V9 — v, d(v, — Vi) UV, — Vg
C =0 C: =0
R Va TR at R

also if we assume that vo; = v9 and vee = v; — v, then the above can be rewritten as

dver  va—v; V2 — U, 1 1 v; Vi — V09
& - R on - Cr TRt er T oR,
( 1 N 1 ) 1 n ( 1 4 1 )
— Vo — U V;
CiR;, CiRy cl C1 Ry . CiRy, CiRy
dvey v, — Uy UV; — Voo — Ve 1 1 n 1
dt Cy Ry Cy Ry TRy VT CoRy 2T CoR,
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Let us assign states as follows:

I1 = Vo1 L2 = VcC2

Let us obtain state-variable equation as the vector equation:

. 1 1 1 1 1
[xll — | O’y + Ch1R2 0132] L1 + C1Ry + ClR2] U
. 1 1 1
L2 — O9Ry "~ CaR, L2 CsRs
z = Ax + Bu
and the output equation is
Ty
y = [0 —1} 1w
4p)
y=Cx+ Du

e (Example 7.3)
e (Example 7.4)
e (Example 7.5)
e (Example 7.6)
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3 Block Diagrams and State-Space

e See Fig. 7.3 for the integrator as the central element.

X 1 | x
I

e Integrator is constructed from an OP-Amp with a capacitor feedback and a resistor feed-forward
as shown in Fig. 2.29

C

Vi, O—/\/\/\/—4 —O vour
Rin

i
out
«—
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e (Example) Find a state-variable description and the transfer function of the system shown in the
following figure whose differential equation is

+ |1 {1‘1 Xz‘l X3
uo—>64>@+ SJ 5 5 Oy

_J'_A +

—6

—11 |«

y® + 6§ + 119 + 6y = 6u

From the figure, we know that

Yy =3
.fgzxg
jjgzl’l

.i’l == —6$1 — 111’2 - 6.%'3 + o6u

The state-space description becomes

i 6 —11 —6| | 6 1
iol =11 0 0] |z +]|0|u y:[OOl} 2ol +0-u
i3 0 1 0] |as 0 T3
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The transfer function is

Y(s) 6
U(s) s3+6s2+11s+6

s°Y (5) + 65°Y (s) + 11sY (s) + 6Y (s) = 6U(s)  —

e (Example 7.7)

100



