
• (Example 6.2) Bode plot of the lead compensation, which is equivalent to

Dc(s) = K
Ts+ 1

↵Ts+ 1
for ↵ < 1

|Dc(j!)|dB = 20 log10 |Dc(j!)|

= 20 log10

����K
Ts+ 1

↵Ts+ 1

����

= 20 log10 |K|+ 20 log10 |1 + j!T |� 20 log10 |1 + j!↵T |

= 20 log10 |K|+ 20 log10
p

1 + !2T 2 � 20 log10
p

1 + !2↵2T 2

\Dc(j!) = \K + \(1 + j!T )� \(1 + j!↵T )

= 0 + tan�1(!T )� tan�1(!↵T )

Use K = 1, T = 1 and ↵ = 0.1

! = 0.1 ! |Dc(j!)|dB ⇡ 0 and \Dc(j!) ⇡ 0

! =
1

T
= 1 ! |Dc(j!)|dB ⇡ 3 and \Dc(j!) ⇡ 45�

! =
1

↵T
= 10 ! |Dc(j!)|dB ⇡ 17 and \Dc(j!) ⇡ 45�

! = 100 ! |Dc(j!)|dB ⇡ 20 and \Dc(j!) ⇡ 0�
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• (Example 6.3) Bode plot of the following transfer function

G(s) =
2000(s+ 0.5)

s(s+ 10)(s+ 50)
! G(j!) =

2(1 + 2j!)

(j!)(1 + 0.1j!)(1 + 0.02j!)

1. l0:

|G(j!)|dB = 20 log10 |2|+ 20 log10
p

1 + (2!)2 � 20 log10 |!|� 20 log10
p

1 + (0.1!)2 � 20 log10
p

1 + (0.02!)2

2. ⌅¡:

\G(j!) = 0 + tan�1(2!)� 90� � tan�1(0.1!)� tan�1(0.02!)

3. see Fig. 6.9

• (Example 6.4)

• (Example 6.5)

• (Example 6.6)
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• (Nonminimum-Phase Systems) \å⌅¡h⇠@ D\å⌅¡h⇠

1. s …tX $xΩ ⇠…t– ˘tò �⇣D �¿ Jî ⌅Ïh⇠î \å⌅¡ ‹§\tp, s …tX $xΩ
⇠…t– ˘tò �⇣D �î ⌅Ïh⇠î D\å⌅¡ ⌅Ïh⇠t‰.

2. ⇡@ l0 π1D �ƒ ‹§\– �t⌧, \å⌅¡ ⌅Ïh⇠X ⌅¡�X î⌅� m¡ \åtp, Ÿ|
l0 π1D �î D\å⌅¡ ⌅Ïh⇠X ⌅¡�X î⌅î t \å✓Ù‰ l‰.

3. \å⌅¡ ‹§\– �t⌧î l0 · Ã<\ ⌅Ïh⇠|  |Xå ∞�` ⇠ à‰. D\å⌅¡ ‹§
\@ à�•X‰.

G1(s) = 10
s+ 1

s+ 10
and G2(s) = 10

s� 1

s+ 10

Both TFs have the same magnitude for all frequencies, but the phases of the two TFs are
drastically different
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4. ‰LX ⌅Ïh⇠| Ñ�t Ùê

G(s) =
1

1� sT
! G(j!) =

1

1� j!T

– for positive T

\G(j!) = tan�1 !T ! \G(j!) : 0 ! 90�

! ⌅¡t 0ƒ–⌧ 90ƒ ¡πXî Ω∞î 1 + j!Tƒ à¥⌧, ¥êÉx¿ lÑ⇠¿ Jî‰.
– for negative T

\G(j!) = � tan�1(�!T ) ! \G(j!) : 0 ! �90�

5. D\å⌅¡ ⌅Ïh⇠X Ùp  ƒ\î H�ƒ t�D ` ⇠ ∆‰. (¯Ïò Nyquist  ƒî H�ƒ ⇣
ƒt �•X‰)
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1.2 Steady-State Errors
• Consider the open-loop transfer function:

KG(s) = K
(1 + T1s)

sn(1 + Tas)(1 + 2⇣s/!n + s2/!2
n)

! at low frequency KG(j!) ⇡ Ko

(j!)n

• The larger the value of the magnitude of the low-frequency asymptote, the lower the steady-state
errors will be for the closed-loop system.

• For unity-feedback system with n = 0 (Type 0 system), the low-frequency asymptote is a constant,
and the gain Ko of the open-loop system is equal to the position-error constant Kp.

Kp = Ko ! ess =
1

1 +Kp
with a unit-step input

• For unity-feedback system with n = 1 (Type 1 system), the low frequency asymptote has a slope
of -1 with Ko/!, directly from the Bode magnitude plot. Then the velocity-error constant

Kv = Ko ! ess =
1

Kv
with a unit-ramp input
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• The easiest way of determining the value of Kv in a Type 1 system is to read the magnitude of
the low-frequency asymptote at ! = 1, because this asymptote is A(!) = Kv/!

• (Example 6.7) Find Kv of the unity-feedback system having the system KG(s) = 10
s(s+1)?
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2 Neutral Stability
• If we know closed-loop TF, then we can check the stability easily by inspecting the positions of

poles.

• If we know open-loop TF, then we can check the stability by using Root Locus. All points on the
locus have the property that

|KG(s)| = 1 and \G(s) = ±180�
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• At the point of neutral stability we see that these RL conditions hold for s = j!, so

|KG(j!)| = 1 and \G(j!) = ±180�

• For stability, the following two conditions should be satisfied

when \G(j!) = �180� ! |KG(j!)| < 1
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