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Nonlinear Systems

1 Why Study Nonlinear Systems?

• Kochenburger - Describing function in 1950

– A describing function can be defined for nonlinear elements, including those with memory.

• Lyapunov - stability of motion in 1892

1. First method : if the linear approximation is strictly stable (having all roots in the left half-
plane), then the nonlinear system will have a region of stability around the equilibrium point
where the linear approximation applies. Furthermore, if the linear approximation has at
least one root in the right half-plane, then the nonlinear system cannot have any region of
stability in the neighborhood of the equilibrium. (effectiveness of linearization)

2. Second method : if Lyapunov function (internal energy stored in the system, V > 0 and V̇ < 0)
can be found, then the system on which it is based will be stable.

• If the internal energy decreases according to the passage of time, the system will be stable. (con-
cept of stability)
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2 Analysis by Linearization

• (9.2.1) Linearization by Small-Signal Analysis

1. Assume that nonlinear system is given by

ẋ = f(x, u)

2. Equilibrium point is defined as the state vector x = x0 2 <n and input u = u0 2 < satisfying
ẋ = 0 such as

ẋ = 0 = f(x0, u0)

3. Let us apply Taylor series expansion about the equilibrium point x = x0 and u = u0

ẋ = f(x0, u0) +
@f(x, u)

@xT

����
x=x0,u=u0

(x� x0) +
@f(x, u)

@u

����
x=x0,u=u0

(u� u0) +H.O.T

4. Let us define new states as follows:

x̄ = x� x0 ū = u� u0

then we have

˙̄x+ ẋ0 = f(x0, u0) +
@f(x, u)

@xT

����
x=x0,u=u0

x̄+
@f(x, u)

@u

����
x=x0,u=u0

ū+H.O.T
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where

ẋ0 = f(x0, u0)

5. Now we have an approximate system as follow:

˙̄x = Ax̄+Bū

where

A =
@f(x, u)

@xT

����
x=x0,u=u0

B =
@f(x, u)

@u

����
x=x0,u=u0

where A and B are the best linear fits to the nonlinear function f(x, u) at x0 and u0.
6. As a result, the control input is designed as

u = u0 + ū

where ū can be designed according to the linear control theories.
7. For above procedures, we assumed either that the motion was small or that motion from

some operating point was small, so that nonlinear functions were approximated by linear
functions.
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8. (Example 9.1) Check the stability of the pendulum system at the equilibrium points
– Equation of motion

ml2✓̈ +mgl sin ✓ = Tc ! ✓̈ +
g

l
sin ✓ =

Tc

ml2
! ✓̈ + !2

o sin ✓ = u

where !o =
pg

l and u = Tc

ml2 .
– Nonlinear differential equation

x1 = ✓ ẋ1 = ✓̇ = x2

x2 = ✓̇ ẋ2 = ✓̈ = �!2
o sin x1 + u

Thus we have
"
ẋ1

ẋ2

#
=

"
x2

�!2
o sin x1 + u

#
 ẋ = f(x, u) 2 <2

– Equilibrium points

ẋ = 0 ! x2 = 0 and sin x1 = 0 and u = 0 ! x1 = n⇡ and x2 = 0 and u = 0

where n is an integer. In other words,

x0 =

"
n⇡

0

#
and u0 = 0
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– The linearized system at the equilibrium points x̄ = x� x0 and ū = u� u0

˙̄x = Ax̄+Bū

A =
@f(x, u)

@xT

����
x=x0,u=u0

=

"
@x2

@x1

@x2

@x2

@(�!2
o sinx1)
@x1

@(�!2
o sinx1)
@x2

#�����
x=x0,u=u0

=

"
0 1

�!2
o cos x1 0

#�����
x=x0,u=u0

B =
@f(x, u)

@u

����
x=x0,u=u0

=

"
@0
@u
@u
@u

#�����
x=x0,u=u0

=

"
0

1

#

– At x0 = [0, 0] and u0 = 0, the equilibrium is neutrally stable because

A =

"
0 1

�!2
o 0

#
eigenvalues ± j!o

– At x0 = [⇡, 0] and u0 = 0, the equilibrium is unstable because

A =

"
0 1

!2
o 0

#
eigenvalues ± !o
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9. (Example 9.2) Linearize the following nonlinear equation using the experimental result shown
in Fig. 9.3 at the equilibrium x = x1 and i = i2 = 0.6A

a) Equation of motion

mẍ = fm(x, i)�mg

where fm(x, i) obtained as the Fig. 9.3, and mg = 0.082N and m = 0.0084kg

b) Linearization of fm(x, i) with x̄1 = x� x1 and ī = i� i2

fm(x1 + x̄1, i2 + ī) ⇡ fm(x1, i2) +Kxx̄1 +Kīi

= 0.082 + 14x̄1 + 0.4̄i

where

Kx = 14N/m Ki =
0.122� 0.042

0.7� 0.5
= 0.4N/A
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c) The linearized system at the equilibrium points

m(¨̄x1 + ẍ1) ⇡ fm(x1, i2) +Kxx̄1 +Kīi�mg

0.0084¨̄x1 = (0.082 + 14x̄1 + 0.4̄i)� 0.082

= 14x̄1 + 0.4̄i

¨̄x1 = 1667x̄1 + 47.6̄i

d) Let us assign new state x̄2 = ˙̄x1 and control u = ī, then we have

"
˙̄x1

˙̄x2

#
=

"
0 1

1667 0

#"
x̄1

x̄2

#
+

"
0

47.6

#
u

where x = x̄1 + x1[m] and i = u+ i2 = u+ 0.6[A]
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• (9.2.2) Linearization by Nonlinear Feedback

1. By subtracting the nonlinear terms out of the dynamic equations and adding them to the
control, the nonlinear system can be a linear system.

2. For robots with two or three rigid links, it is called computed torque approach.
3. (Example 9.4) Linearize the system by using the nonlinear feedback

ml2✓̈ +mgl sin ✓ = Tc

If we compute the torque to be

Tc = mgl sin ✓ + u

then the motion is described by

ml2✓̈ = u

In addition, the auxiliary control u can be designed as

u = �Kv✓̇ +Kp(✓t � ✓) ! Tc = mgl sin ✓ �Kv✓̇ +Kp(✓t � ✓)

where Kv and Kp are gains and ✓t is a target to be tracked.
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• (9.2.3) Linearization by Inverse Nonlinearity

1. It is sometimes possible to reverse the effect of some nonlinearities. For example, suppose
we have a system whose output is the square of the signal of interest:

y = x2

One clever and rather obvious technique is to undo the nonlinearity by preceding the physical
nonlinearity with the square root nonlinearity

x =
p

(·)

2. (Example 9.5) Consider the RTP (rapid thermal processing) system that uses a nonlinear
lamp as an actuator as shown in Fig. 9.5. If we apply the following nonlinearity

V =
p

V 0 ! Y = G(s)P = G(s)V 2 = G(s)V 0

Thus we can use linear control design techniques for the dynamic compensator Dc(s).
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