4 Hardware Characteristics

- Analog-to-Digital (A/D) Converters are devices that convert a voltage level from a sensor to a digital word usable by the computer
- Counting scheme
* The input voltage may be converted to a train or pulses whose frequency is proportional to the voltage level.
* The pulses are then counted over a fixed period using a binary counter, thus resulting in binary representation of the voltage level.
* Counter-based converter might require as many as 2^{n} cycles.
- Successive-approximation technique
* It is based on successively comparing the input voltage to reference levels representing the various bits in the digital word.
* One clock cycle is required to set each bit, so an n-bit converter would require n cycles.
- If more than one channel of data needs to be sampled and converted to digital words, it is usually accomplished using a multiplexer rather than by multiple A/D converters.
- The multiplexer sequentially connects the converter into the channel being sampled.
- Digital-to-Analog (D/A) Converters are used to convert the digital words from the computer to a voltage level and are sometimes referred to as sample and hold devices.
- Because no counting or iteration is required for such conveters, they tend to be much faster than A/D converters.
- A/D converters that use the successive approximation method of converion include D/A converters as components.
- The price of D/A converteris is comparable to A/D converters, but usually somewhat lower.
- Computer is the device where the compensation $D_{d}(z)$ is programmed and the calculations are carried out.
- Analog Anti-Alias Prefilters are often placed between the analog sensor and the A/D converter.
- An example of aliasing is shown Fig. 8.16, where 60 Hz oscillatory signal is being sampled at 50 Hz . The figure shows the result from the samples as a 10 Hz signal and also shows the mechanism by which the frequency of the signal is aliased from 60 to 10 Hz .

Figure 8.16
An example of aliasing

- Its function is to reduce the higher frequency noise components in the analog signal in order to prevent aliasing.
- Aliasing will occur any time the sample rate is not at least twice as fast as any of the frequencies in the signal being sampled.
- To prevent aliasing of a 60 Hz signal, the sample rate would have to be faster than 120 Hz .
- Aliasing can be explained from the sampling theorem of Nyquist and Shannon. For the signal to be reconstructed from the samples, it must have no frequency component greater than half the sample rate (Nyquist rate of $\omega_{s} / 2$).
- In a continuous system, noise components with a frequency much higher than the controlsystem bandwidth normally have a small effect because the system will not respond at the high frequency.
- However, in a digital system, the frequency of the noise can be aliased down to the vincinity of the system bandwidth so the closed-loop system would respond to the noise.
- The solution to prevent aliasing is to place an analog prefilter before the sampler. In many cases, a simple first-order low-pass filter will do - that is -

$$
H_{p}(s)=\frac{a}{s+a}
$$

where the breakpoint a is selected to be lower than Nyquist rate $\omega_{s} / 2$ so that any noise present with frequencies greater than Nyquist rate is attenuated by the prefilter.

- If ω_{s} is chosen to be $25 \times \omega_{b d}$, the anti-aliasing filter breakpoint a should be selected lower than $\omega_{s} / 2$, so that

$$
a=10 \times \omega_{b d} \quad \leftarrow \quad \omega_{s}=25 \times \omega_{b d}
$$

would be a reasonable choice.

5 Sample-Rate Selection

- The inherent approximation for the discrete TF may give rise to decreased performance or even system instability as the sample rate is lowered. This can lead the designer to conclude that a faster sample rate is required.
- The sampling theorem states that in order to reconstruct an unknown, band-limited, continuous signal from samples of that signal, we must sample at least twice as fast as the highest frequency contained in the signal. $\omega_{s}=2 \omega_{b d}$
- In the z-plane, the highest frequency that can be represented by a discrete system is $\omega_{s} / 2$.
- For a very high frequency noise, it would be foolish to sample fast enough to attenuate the disturbance without the use of a prefilter.

6 Discrete Design

- This plant model can be used as part of a discrete model of the feedback system including the compensation $D_{d}(z)$.
- Analysis and design using this discrete model is called discrete design or alternatively, direct digital design.
- For a plant described by $G(s)$ and preceeded by a ZOH, the discrete TF was essentially given by

$$
G(z)=\left(1-z^{-1}\right) \mathcal{Z}\left\{\frac{G(s)}{s}\right\}
$$

Figure 8.17
Comparison of: (a) a mixed system; and (b) its pure discrete equivalent

- The closed-loop poles or the roots of the discrete characteristic equation

$$
1+D_{d}(z) G(z)=0
$$

- The root-locus techniques used in continuous systems to find roots of a polynomial in s apply equally well and without modification to the polynoimal in z.
- The interpretation of the results is that the stability boundary is now the unit circle instead of the imaginary axis.
(Example 8.4) When $G(s)=\frac{a}{s+a}$ and $D_{d}(z)=K$, draw the root locus with respect to K ? (Answer)

$$
\begin{aligned}
G(z) & =\left(1-z^{-1}\right) \mathcal{Z}\left\{\frac{a}{s(s+a)}\right\}=\left(1-z^{-1}\right) \mathcal{Z}\left\{\frac{1}{s}-\frac{1}{s+a}\right\} \\
& =\left(1-z^{-1}\right)\left(\frac{1}{1-z^{-1}}-\frac{1}{1-e^{-a T} z^{-1}}\right) \\
& =\frac{\left(1-e^{-a T}\right) z^{-1}}{1-e^{-a T} z^{-1}} \\
& =\frac{(1-\alpha) z^{-1}}{1-\alpha z^{-1}} \quad \text { where } \quad \alpha=e^{-a T}
\end{aligned}
$$

The discrete characteristic equation becomes

$$
1+D_{d}(z) G(z)=1+K \frac{(1-\alpha) z^{-1}}{1-\alpha z^{-1}}=0
$$

Figure 8.18
Root loci for: (a) the z-plane; and (b) the s-plane

(a)

(b)

In the continuous case, the system remains stable for all values of K. In the discrete case, the system becomes oscillatory with decreasing damping ratio as z goes from 0 to -1 and eventually becomes unstable. This instability is due to the lagging effect of the ZOH.

Feedback properties

- Proportional

$$
u(k)=K e(k) \quad \leftrightarrow \quad D_{d}(z)=K
$$

- Derivative

$$
u(k)=K T_{D}[e(k)-e(k-1)] \quad \leftrightarrow \quad D_{d}(z)=K T_{D}\left(1-z^{-1}\right)
$$

- Integral

$$
u(k)=u(k-1)+\frac{K}{T_{I}} e(k) \quad \leftrightarrow \quad D_{d}(z)=\frac{K}{T_{I}}\left(\frac{1}{1-z^{-1}}\right)
$$

- Lead

$$
u(k)=\beta u(k-1)+K[e(k)-\alpha e(k-1)] \quad \leftrightarrow \quad D_{d}(z)=K \frac{1-\alpha z^{-1}}{1-\beta z^{-1}}
$$

(Example 8.5) Design a digital controller to have a closed-loop natural frequency $\omega_{n}=0.3$ and a damping ratio $\zeta=0.7$ using discrete design (Answer)

$$
G(s)=\frac{1}{s^{2}} \quad \rightarrow \quad G(z)=\left(1-z^{-1}\right) \mathcal{Z}\left\{\frac{1}{s^{3}}\right\}=\frac{T^{2}}{2} \frac{z^{-1}\left(1+z^{-1}\right)}{\left(1-z^{-1}\right)^{2}}
$$

which, with $T=1$, becomes

$$
G(z)=\frac{1}{2} \frac{z^{-1}\left(1+z^{-1}\right)}{\left(1-z^{-1}\right)^{2}}
$$

Let us assume that the PD compensator is used

$$
D_{d}(z)=K\left(1-\alpha z^{-1}\right)
$$

The desired pole locations of $\omega_{n}=0.3$ and $\zeta=0.7$ become $z=0.78 \pm 0.18 j$

$$
1+D_{d}(z) G(z)=1+K \frac{1}{2} \frac{z^{-1}\left(1+z^{-1}\right)\left(1-\alpha z^{-1}\right)}{\left(1-z^{-1}\right)^{2}}=0
$$

Now we have

$$
\alpha=0.85 \quad K=0.374
$$

and

$$
D_{d}(z)=0.374\left(1-0.85 z^{-1}\right)
$$

The difference equation becomes

$$
u(k)=0.374[e(k)-0.85 e(k-1)]
$$

(8장 숙제) 15 개의 문제 중 4 개 풀어 제출

