
4 Hardware Characteristics

• Analog-to-Digital (A/D) Converters are devices that convert a voltage level from a sensor to a
digital word usable by the computer

– Counting scheme
⇤ The input voltage may be converted to a train or pulses whose frequency is proportional

to the voltage level.
⇤ The pulses are then counted over a fixed period using a binary counter, thus resulting

in binary representation of the voltage level.
⇤ Counter-based converter might require as many as 2n cycles.

– Successive-approximation technique
⇤ It is based on successively comparing the input voltage to reference levels representing

the various bits in the digital word.
⇤ One clock cycle is required to set each bit, so an n-bit converter would require n cycles.

• If more than one channel of data needs to be sampled and converted to digital words, it is usually
accomplished using a multiplexer rather than by multiple A/D converters.

• The multiplexer sequentially connects the converter into the channel being sampled.
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• Digital-to-Analog (D/A) Converters are used to convert the digital words from the computer to a
voltage level and are sometimes referred to as sample and hold devices.

– Because no counting or iteration is required for such conveters, they tend to be much faster
than A/D converters.

– A/D converters that use the successive approximation method of converion include D/A con-
verters as components.

– The price of D/A converteris is comparable to A/D converters, but usually somewhat lower.

• Computer is the device where the compensation Dd(z) is programmed and the calculations are
carried out.
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• Analog Anti-Alias Prefilters are often placed between the analog sensor and the A/D converter.

– An example of aliasing is shown Fig. 8.16, where 60Hz oscillatory signal is being sampled
at 50Hz. The figure shows the result from the samples as a 10Hz signal and also shows the
mechanism by which the frequency of the signal is aliased from 60 to 10Hz.

– Its function is to reduce the higher frequency noise components in the analog signal in order
to prevent aliasing.

– Aliasing will occur any time the sample rate is not at least twice as fast as any of the fre-
quencies in the signal being sampled.

– To prevent aliasing of a 60Hz signal, the sample rate would have to be faster than 120Hz.
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– Aliasing can be explained from the sampling theorem of Nyquist and Shannon. For the signal
to be reconstructed from the samples, it must have no frequency component greater than half
the sample rate (Nyquist rate of !s/2).

– In a continuous system, noise components with a frequency much higher than the control-
system bandwidth normally have a small effect because the system will not respond at the
high frequency.

– However, in a digital system, the frequency of the noise can be aliased down to the vincinity
of the system bandwidth so the closed-loop system would respond to the noise.

– The solution to prevent aliasing is to place an analog prefilter before the sampler. In many
cases, a simple first-order low-pass filter will do - that is -

Hp(s) =
a

s+ a

where the breakpoint a is selected to be lower than Nyquist rate !s/2 so that any noise
present with frequencies greater than Nyquist rate is attenuated by the prefilter.

– If !s is chosen to be 25 ⇥ !bd, the anti-aliasing filter breakpoint a should be selected lower
than !s/2, so that

a = 10⇥ !bd  !s = 25⇥ !bd

would be a reasonable choice.
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5 Sample-Rate Selection

• The inherent approximation for the discrete TF may give rise to decreased performance or even
system instability as the sample rate is lowered. This can lead the designer to conclude that a
faster sample rate is required.

• The sampling theorem states that in order to reconstruct an unknown, band-limited, continuous
signal from samples of that signal, we must sample at least twice as fast as the highest frequency
contained in the signal. !s = 2!bd

• In the z-plane, the highest frequency that can be represented by a discrete system is !s/2.

• For a very high frequency noise, it would be foolish to sample fast enough to attenuate the dis-
turbance without the use of a prefilter.
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6 Discrete Design

• This plant model can be used as part of a discrete model of the feedback system including the
compensation Dd(z).

• Analysis and design using this discrete model is called discrete design or alternatively, direct dig-
ital design.

• For a plant described by G(s) and preceeded by a ZOH, the discrete TF was essentially given by

G(z) = (1� z�1)Z

⇢
G(s)

s

�

• The closed-loop poles or the roots of the discrete characteristic equation

1 +Dd(z)G(z) = 0

• The root-locus techniques used in continuous systems to find roots of a polynomial in s apply
equally well and without modification to the polynoimal in z.

• The interpretation of the results is that the stability boundary is now the unit circle instead of
the imaginary axis.
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(Example 8.4) When G(s) = a
s+a and Dd(z) = K, draw the root locus with respect to K?

(Answer)

G(z) = (1� z�1)Z

⇢
a

s(s+ a)

�
= (1� z�1)Z

⇢
1

s
�

1

s+ a

�

= (1� z�1)

✓
1

1� z�1
�

1

1� e�aTz�1

◆

=
(1� e�aT )z�1

1� e�aTz�1

=
(1� ↵)z�1

1� ↵z�1
where ↵ = e�aT

The discrete characteristic equation becomes

1 +Dd(z)G(z) = 1 +K
(1� ↵)z�1

1� ↵z�1
= 0

In the continuous case, the system remains stable for all values of K. In the discrete case, the system
becomes oscillatory with decreasing damping ratio as z goes from 0 to -1 and eventually becomes un-
stable. This instability is due to the lagging effect of the ZOH.
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Feedback properties

• Proportional

u(k) = Ke(k) $ Dd(z) = K

• Derivative

u(k) = KTD[e(k)� e(k � 1)] $ Dd(z) = KTD(1� z�1)

• Integral

u(k) = u(k � 1) +
K

TI
e(k) $ Dd(z) =

K

TI

✓
1

1� z�1

◆

• Lead

u(k) = �u(k � 1) +K[e(k)� ↵e(k � 1)] $ Dd(z) = K
1� ↵z�1

1� �z�1
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(Example 8.5) Design a digital controller to have a closed-loop natural frequency !n = 0.3 and a damp-
ing ratio ⇣ = 0.7 using discrete design
(Answer)

G(s) =
1

s2
! G(z) = (1� z�1)Z

⇢
1

s3

�
=

T 2

2

z�1(1 + z�1)

(1� z�1)2

which, with T = 1, becomes

G(z) =
1

2

z�1(1 + z�1)

(1� z�1)2

Let us assume that the PD compensator is used

Dd(z) = K(1� ↵z�1)

The desired pole locations of !n = 0.3 and ⇣ = 0.7 become z = 0.78± 0.18j

1 +Dd(z)G(z) = 1 +K
1

2

z�1(1 + z�1)(1� ↵z�1)

(1� z�1)2
= 0

Now we have

↵ = 0.85 K = 0.374

and

Dd(z) = 0.374(1� 0.85z�1)
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The difference equation becomes

u(k) = 0.374[e(k)� 0.85e(k � 1)]

(8• ⇡⌧) 15⌧X 8⌧ ⌘ 4⌧ Ä¥ ⌧ú
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