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Digital Control

1 Digitization

1. Most control systems use digital computers (usually microprocessors) to implement the controller.

2. Sampler and A/D Converter, D/A Converter and ZOH (Zeroth-Order Holding), and Clock
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3. The computation of error signal e(t) and the dynamic compensation Dc(s) can all be accomplished
in a digital computer.

4. Difference equation for discrete time system $ Differential equation for continuous time system

5. Two basic techniques for finding the difference equations for the digital controller, from Dc(s) to
Dd(z)

• Discrete equivalent - section 8.3
• Discrete design - section 8.7

6. The analog output of the plant sensor is sampled and converted to a digital number in the analog-
to-digital (A/D) converter. (Sampler and ADC)

• Conversion from the continuous analog signal y(t) to the discrete digital samples y(kT ) occurs
repeatedly at instants of time T apart where T is the sample period [s] and 1/T is the sample
rate [Hz].

y(t) ! y(k) = y(kT ) with t = kT

where k is an integer and T is a fixed value.
• The sampled signal is y(kT ), where k can take on any integer value.
• It is often written simply as y(k). We call this type of variable a discrete signal.
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7. The D/A converter changes the digital binary number to an analog voltage, and a zeroth-order
hold maintains the same voltage throughout the sample period T . (DAC and ZOH)

• Because each value of u(kT ) in Fig. 8.1(b) is held constant until the next value is available
from the computer, the continuous value of u(t) consists of steps (see Fig. 8.2) that, on aver-
age, are delayed from a fit to u(kT ) by T/2 as shown in the figure.

• Sample rates should be at least 20 times the bandwidth in order to assure that the digital
controller will match the performance of the continuous controller.

• If we simply incorporate this T/2 delay into a continuous analysis of the system, an excellent
prediction results in, especially, for sample rates much slower than 20 times bandwidth.

8. A system having both discrete and continuous signals is called a ‘sampled data system’.
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2 Dynamic Analysis of Discrete Systems

• z-transform for discrete time systems $ Laplace transform for continuous time systems.

• (8.2.1) z-Transform

1. Laplace transform and its important property

L(f(t)) = F (s) =

Z
1

0
f(t)e�stdt L(ḟ(t)) = sF (s)

where f(0+) = 0

2. z-transform is defined by

Z(f(k)) = F (z) =
1X

k=0

f(k)z�k
Z(f(k � 1)) =

1X

k=0

f(k � 1)z�k

= f(0) + f(1)z�1 + f(2)z�2 + · · · = f(�1) + f(0)z�1 + f(1)z�2 + f(2)z�3 + · · ·

= z�1
⇥
f(0) + f(1)z�1 + f(2)z�2 + · · ·

⇤

= z�1F (z)

where f(k) is the sampled version of f(t) and z�1 represents one sample delay, and f(�1) = 0.
3. Important property between LT and z-transform

z = esT $ s =
1

T
ln z
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4. For example, the general second-order difference equation

y(k) = �a1y(k � 1)� a2y(k � 2) + b0u(k) + b1u(k � 1) + b2u(k � 2)

can be converted from this form to the z-transform of the variables y(k) and u(k) by invoking
above relations,

Y (z) = (�a1z
�1

� a2z
�2)Y (z) + (b0 + b1z

�1 + b2z
�2)U(z)

now we have a discrete transfer function:

Y (z)

U(z)
=

b0 + b1z�1 + b2z�2

1 + a1z�1 + a2z�2

208



• (8.2.2) z-Transform Inversion

1. See the Table 8.1 for understanding between z-transform and LT

F (s) f(kT ) F (z)
- 1, k = 0 and 0, k 6= 0 1
- 1, k = k0 and 0, k 6= k0 z�k0

1
s 1(kT ) z

z�1
1

1�z�1

1
s2 kT Tz

(z�1)2
Tz�1

(1�z�1)2
1

s+a e�akT z
z�e�aT

1
1�e�aT z�1

1
s(s+a) 1� e�akT z(1�e�aT )

(z�1)(z�e�aT )
z�1(1�e�aT )

(1�z�1)(1�e�aT z�1)
a

s2+a2 sin akT z sin aT
z2�(2 cos aT )z+1

z�1 sin aT
1�(2 cos aT )z�1+z�2

s
s2+a2 cos akT z(z�cos aT )

z2�(2 cos aT )z+1
(1�z�1 cos aT )

1�(2 cos aT )z�1+z�2

2. For parts of Table, we have

Z(�(t)) = 1 + 0z�1 + 0z�2 + · · · = 1

Z(�(t = k0T )) = 0 + 0z�1 + · · ·+ 1z�k0 + · · ·+ = z�k0

Z(1(t)) = 1 + z�1 + z�2 + · · · =
1

1� z�1
= (1� z�1)�1

Z(e�at) = 1 + e�aTz�1 + e�2aTz�2 + · · · =
1

1� e�aTz�1
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3. The differentiator s is transformed into z-domain

1

s
$

1

1� z�1
s $ (1� z�1)

4. z-transform of ramp signal t = kT becomes

Z(t) = 0 + Tz�1 + 2Tz�2 + 3Tz�3 + · · ·

= T [z�1 + 2z�2 + 3z�3 + · · · ]

z�1
Z(t) = T [z�2 + 2z�3 + 3z�4 + · · · ]

(1� z�1)Z(t) = T [z�1 + z�2 + z�3 + · · · ] = T
z�1

1� z�1

Z(t) =
Tz�1

(1� z�1)2
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5. A z-transform inversion technique that has no continuous counterpart is called ‘long division’.
For example, consider a first-order discrete system

y(k) = ↵y(k � 1) + u(k) !
Y (z)

U(z)
=

1

1� ↵z�1

For a unit-pulse input, its z-transform is

U(z) = 1

so the long division becomes

Y (z) =
1

1� ↵z�1

= 1 + ↵z�1 + ↵2z�2 + ↵3z�3
· · ·

We see that the sampled time history of y is

y(0) = 1 y(1) = ↵ y(2) = ↵2 y(3) = ↵3
· · ·
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• (8.2.3) Relationship between s and z

1. Consider the continuous signal of

f(t) = e�at t > 0

F (s) =

Z
1

0
f(t)e�stdt =

Z
1

0
e�(s+a)tdt =

1

s+ a

and it corresponds to a pole s = �a.
2. Consider the discrete signal of

f(kT ) = e�akT

F (z) =
1X

k=0

f(kT )z�k = 1 + e�aTz�1 + e�2aTz�2 + e�3aTz�3 + · · · 4\ÒD ⇠

=
�0X

1�ıD
=

1

1� e�aTz�1
=

z

z � e�aT

and it corresponds to a pole z = e�aT .
3. The equivalent characteristics in the z-plane are related to those in the s-plane by the ex-

pression

z = esT = e�aT+jbT = e�aT (cos bT + j sin b)

= e��T (cos!dT + j sin!dT )

= e�⇣!nT (cos!n

p
1� ⇣2T + j sin!n

p
1� ⇣2T )

where T is the sample period, and s = �� + j!d = �⇣!n + j!n

p
1� ⇣2
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4. See Fig. 8.4, and it shows the mapping of lines of constant damping ⇣ and natural frequency
!n from s-plane to the upper half of the z-plane, using z = esT .

a) The stability boundary s = 0 ± j! becomes the unit circle |z| = 1 in the z-plane; inside
the unit circle is stable, outside is unstable

b) The small vicinity around z = +1 in the z-plane is essentially identical to the vicinity
around the origin s = 0, in the s-plane.

c) The z-plane locations give response information normalized to the sample rate rather
than to time as in the s-plane.

d) The negative real z-axis always represents a frequency of !s/2, where !s = 2⇡/T = cir-
cular sample rate in radians per second.

e) Vertical lines in the left half of the s-plane (the constant real part of s) map into circles
within the unit circle of the z-plane

f) Horizontal lines in the s-plane (the constant imaginary part of s) map into radial lines
in the z-plane.

g) Frequencies greater than !s/2, called the Nyquist frequency, appear in the z-plane on
the top of corresponding lower frequencies because of the circular characteristics of esT .
This overlap is called aliasing or folding.
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5. As a result, it is necessary to sample at least twice as fast as a signal’s highest frequency
component in order to represent that signal with the samples.

6. The figure sketches time responses that would result from poles at the indicated locations.
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• (8.2.4) Final Value Theorem

1. Discrete final value theorem is

lim
t!1

x(t) = xss = lim
s!0

sX(s) lim
k!1

x(k) = xss = lim
z!1

(1� z�1)X(z)

if all the poles of (1� z�1)X(z) are inside the unit circle.
2. For example, to find the DC gain of the TF

G(z) =
X(z)

U(z)
=

0.58(1 + z)

z + 0.16

we let u(k) = 1 for k � 0, so that

U(z) =
1

1� z�1

and

X(z) =
0.58(1 + z)

(1� z�1)(z + 0.16)

Applying the final value theorem yields

xss = lim
z!1

(1� z�1)X(z) =
0.58 · 2

1 + 0.16
= 1

so the DC gain of G(z) is unity.
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