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Digital Control

1 Digitization
1. Most control systems use digital computers (usually microprocessors) to implement the controller.

2. Sampler and A/D Converter, D/A Converter and ZOH (Zeroth-Order Holding), and Clock
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. The computation of error signal ¢(¢) and the dynamic compensation D.(s) can all be accomplished
in a digital computer.

. Difference equation for discrete time system <> Differential equation for continuous time system

. Two basic techniques for finding the difference equations for the digital controller, from D.(s) to
Dq(z)

e Discrete equivalent - section 8.3

e Discrete design - section 8.7

. The analog output of the plant sensor is sampled and converted to a digital number in the analog-
to-digital (A/D) converter. (Sampler and ADC)

e Conversion from the continuous analog signal y(¢) to the discrete digital samples y(k7T") occurs
repeatedly at instants of time 7" apart where T is the sample period [s] and 1/7T is the sample
rate [Hz].

y(t)y — y(k) =y(kT) with t=kT

where k is an integer and 7T is a fixed value.
e The sampled signal is y(kT'), where k can take on any integer value.

e It is often written simply as y(k). We call this type of variable a discrete signal.
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7. The D/A converter changes the digital binary number to an analog voltage, and a zeroth-order
hold maintains the same voltage throughout the sample period 7. (DAC and ZOH)
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e Because each value of u(kT) in Fig. 8.1(b) is held constant until the next value is available
from the computer, the continuous value of u(t) consists of steps (see Fig. 8.2) that, on aver-
age, are delayed from a fit to w(k7) by 7/2 as shown in the figure.

e Sample rates should be at least 20 times the bandwidth in order to assure that the digital
controller will match the performance of the continuous controller.

e If we simply incorporate this 7'/2 delay into a continuous analysis of the system, an excellent
prediction results in, especially, for sample rates much slower than 20 times bandwidth.

8. A system having both discrete and continuous signals is called a ‘sampled data system’.
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2 Dynamic Analysis of Discrete Systems

e z-transform for discrete time systems <« Laplace transform for continuous time systems.
e (8.2.1) z-Transform

1. Laplace transform and its important property

L(f(t) = F(s) = / " F()e L(f(1)) = sF(s)

where f(0%) =0

2. z-transform is defined by

U = Fe) = fh)= Z(flk=1) =3 Sk =1)z"
5=0 —
=[O+ fD + @)+ = f(=1)+ f0)z7 + f(1)22 4+ f(2) 2 + -+
=z ' [fO)+ fF(D)z + f(2)2 24 ]
=2 'F(2)

where f(k) is the sampled version of f(¢) and z~! represents one sample delay, and f(—1) = 0.

3. Important property between LT and z-transform

z=e s s=—1Inz
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4. For example, the general second-order difference equation
y(k) = —ary(k — 1) — azy(k — 2) + bou(k) + bru(k — 1) + byu(k — 2)

can be converted from this form to the z-transform of the variables y(k) and u(k) by invoking
above relations,

Y(2) = (—a127 ' — agz 2)Y (2) + (by + b1z + boz )U(2)

now we have a discrete transfer function:

Y(z)  bo+ biz7 !+ byz?
U(z) 14+az! +agz?
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o (8.2.2) z-Transform Inversion

F(s) f(KT) F(z)
- 1, k=0and 0, £ #0 1
- 1, k=Fky and 0, k 7é ko z ko
% 1(k7) = —
o wT (e (-2
1 e_akT —z 1
sta z—e~oT l—e—aTz—1
1 | — o—akT z(1—e"T) 2 (1—emh)
s(s+a) . (2_1)(.2_?GT) (1_2717)9._67;@271)
s$24-a? sin ak T’ 227g2 cos aT)z)Jrl 17((2 Cos aT)z*lJr)z*2
s z(z—cosal 1—z"1cosaT
s2+a? cos akT 22—(2cosaT)z+1 | 1—(2cosaT)z= 14272

2. For parts of Table, we have

ZO) =140z 402724 ---

=1

1. See the Table 8.1 for understanding between z-transform and LT

Z(6(t=kT) =040z 4 - Flz 4.4 =z

ZAt) =142z 4272+
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3. The differentiator s is transformed into z-domain

1 o 1
S 1 — 21

4. z-transform of ramp signal ¢t = kT becomes
ZB)=0+Tz ' 42T 2 +3T2 3+ ---

=Tl +22 243277+ -]
2 =T 2427 +327 -+

~1
~ ~ ~ ~ 2
1—2zhHZt) =Tz 4+ 2742 3—I—---]:Tl_z_1
Tzt
Z(t)= ——
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5. A z-transform inversion technique that has no continuous counterpart is called ‘long division’.
For example, consider a first-order discrete system

y(k) = ay(k — 1) + u(k) —

For a unit-pulse input, its z-transform is
U(z) =1
so the long division becomes
1
1 —az!

=1l+azrt+a’z?2+a273 ..

Y(z)=

We see that the sampled time history of y is

y(0) =1 y(1) = o y(2) = o y(3) = o’
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e (8.2.3) Relationship between s and =

1. Consider the continuous signal of

fy=e t>0
09} 0 1
F(s) = t)e *dt =/ e~ Tt =
©= [ s 0 —
and it corresponds to a pole s = —a.

2. Consider the discrete signal of

o
rol
o|r
Y
il
S

F(z) = Z fRT)z P =14 e Tyt o2l y72 p g3l =3 .
k=

and it corresponds to a pole z = e 7.

3. The equivalent characteristics in the z-plane are related to those in the s-plane by the ex-
pression

2= = 7T — =0T (cos bT + jsinb)

—UT(

=e 7" (coswyT + jsinwyT)

— e T (coswyy/1 — C2T + jsinw, /1 — C27)
where T is the sample period, and s = —0 + jwg = —Cw,, + jw,/1 — (2
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4. See Fig. 8.4, and it shows the mapping of lines of constant damping ¢ and natural frequency

w, from s-plane to the upper half of the z-plane, using z = e*7.
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a) The stability boundary s = 0 + jw becomes the unit circle |z| = 1 in the z-plane; inside
the unit circle is stable, outside is unstable

b) The small vicinity around z = +1 in the z-plane is essentially identical to the vicinity
around the origin s = 0, in the s-plane.

c) The z-plane locations give response information normalized to the sample rate rather
than to time as in the s-plane.

d) The negative real z-axis always represents a frequency of w,/2, where w, = 27 /T = cir-
cular sample rate in radians per second.

e) Vertical lines in the left half of the s-plane (the constant real part of s) map into circles
within the unit circle of the z-plane

f) Horizontal lines in the s-plane (the constant imaginary part of s) map into radial lines
in the z-plane.

g) Frequencies greater than w,/2, called the Nyquist frequency, appear in the z-plane on
the top of corresponding lower frequencies because of the circular characteristics of e*7.
This overlap is called aliasing or folding.
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5. As a result, it is necessary to sample at least twice as fast as a signal’s highest frequency
component in order to represent that signal with the samples.

6. The figure sketches time responses that would result from poles at the indicated locations.
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e (8.2.4) Final Value Theorem

1. Discrete final value theorem is

lim z(t) = x4 = lim s X () lim 2(k) = 24 = lim(1 — 271) X (2)

t—00 s—0 k—00 z—1

if all the poles of (1 — 271)X(z) are inside the unit circle.
2. For example, to find the DC gain of the TF

X(z) 0.58(1+ %)
U(z)  z+0.16

G(z) =

we let u(k) =1 for k > 0, so that

and

0.58(1 + 2)
(1— 2z 1)(z+0.16)

X(z) =
Applying the final value theorem yields

0.58 - 2
z—1 1+0.16

so the DC gain of G(z) is unity.
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