10 Integral Control and Robust Tracking

10.1 Integral Control

- The choice of \bar{N} will result in zero steady-state error to a step command, but the result is not robust because any change in plant parametrs will cause the error to be nonzero.
- It shows how the integral control can be introduced by a direct method of adding the integral of the system error to the dynamic equations.
- For the system

$$
\dot{x}=A x+B u+B_{1} w \quad y=C x
$$

we can feed back the integral of the error, $e=y-r$, as well as the state of the plant, x, by augmenting the plant state with the extra state x_{I}, which obeys the differential equation

$$
\dot{x}_{I}=C x-r=e
$$

Thus

$$
x_{I}=\int e(\tau) d \tau
$$

- The augmented state equations and the feedback law become

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{x}_{I} \\
\dot{x}
\end{array}\right] } & =\left[\begin{array}{cc}
0 & C \\
0 & A
\end{array}\right]\left[\begin{array}{c}
x_{I} \\
x
\end{array}\right]+\left[\begin{array}{l}
0 \\
B
\end{array}\right] u-\left[\begin{array}{l}
1 \\
0
\end{array}\right] r+\left[\begin{array}{c}
0 \\
B_{1}
\end{array}\right] w \\
u & =-\left[\begin{array}{ll}
K_{1} & K_{0}
\end{array}\right]\left[\begin{array}{c}
x_{I} \\
x
\end{array}\right]
\end{aligned}
$$

- (Example 7.34) Consider the motor speed system described by

$$
\frac{Y(s)}{U(s)}=\frac{1}{s+3}
$$

that is, $A=-3, B=1$ and $C=1$. Design the system to have integral control and two poles at $s=-5$. Design an estimator with pole at $s=-10$. The disturbance enters at the same place as the control.
(Solution) The augmented state equation and the feedback law become

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{x}_{I} \\
\dot{x}
\end{array}\right] } & =\left[\begin{array}{cc}
0 & 1 \\
0 & -3
\end{array}\right]\left[\begin{array}{c}
x_{I} \\
x
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u-\left[\begin{array}{l}
1 \\
0
\end{array}\right] r+\left[\begin{array}{l}
0 \\
1
\end{array}\right] w \\
u & =-\left[\begin{array}{ll}
K_{1} & K_{0}
\end{array}\right]\left[\begin{array}{c}
x_{I} \\
\hat{x}
\end{array}\right]
\end{aligned}
$$

Therefore, we can find K from

$$
\begin{aligned}
\alpha_{c}(s)=\operatorname{det}\left(s I-\left[\begin{array}{cc}
0 & 1 \\
0 & -3
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right]\left[\begin{array}{ll}
K_{1} & K_{0}
\end{array}\right]\right) & =(s+5)^{2} \\
s^{2}+\left(3+K_{0}\right) s+K_{1} & =s^{2}+10 s+25
\end{aligned}
$$

Consequently

$$
K=\left[\begin{array}{ll}
K_{1} & K_{0}
\end{array}\right]=\left[\begin{array}{ll}
25 & 7
\end{array}\right] \quad \rightarrow \quad u=-25 x_{I}-7 \hat{x}=-25 \int(y-r) d t-7 \hat{x}
$$

The estimator gain is obtained by

$$
\alpha_{e}(s)=\operatorname{det}(s-A+L C)=s+3+L=s+10 \quad \rightarrow \quad L=7
$$

The estimator equation is of the form:

$$
\begin{aligned}
\dot{\hat{x}} & =A \hat{x}+B u+L(y-C \hat{x}) \\
& =-10 \hat{x}+u+7 y
\end{aligned}
$$

See the Fig. 7.54 for the integral control structure and its results (step-input response y_{1} and step-disturbance response y_{2}) are shown in Fig. 7.55

10.2 Robust Tracking Control: The Error-Space Approach

1. A more analytical approach is presented to giving the control system the ability to track a nondecaying input and to reject a nondecaying disturbance such as step, ramp, or sinusoidal input.
2. The error approaches zero even if the output is following a nondecaying, or even a growing, command (such as a ramp signal) and even if some parameters change (robustness property).
3. Suppose we have the system state equations:

$$
\dot{x}=A x+B u+B_{1} w \quad y=C x
$$

and a reference signal that is known to satisfy a specific differential equation such as

$$
\ddot{r}+\alpha_{1} \dot{r}+\alpha_{2} r=0
$$

in addition, we assume the disturbance to satisfy exactly the same equation:

$$
\ddot{w}+\alpha_{1} \dot{w}+\alpha_{2} w=0
$$

4. The tracking error is defined as

$$
e=y-r \quad \rightarrow \quad r=y-e
$$

and we can know the following equality from the reference signal dynamics

$$
\begin{aligned}
\ddot{r}+\alpha_{1} \dot{r}+\alpha_{2} r=0 \quad \rightarrow \quad \ddot{e}+\alpha_{1} \dot{e}+\alpha_{2} e & =\ddot{y}+\alpha_{1} \dot{y}+\alpha_{2} y \\
& =C\left(\ddot{x}+\alpha_{1} \dot{x}+\alpha_{2} x\right)
\end{aligned}
$$

5. Now replace the plant state vector with the error-space state and the control with the error-space control, respectively,

$$
\xi=\ddot{x}+\alpha_{1} \dot{x}+\alpha_{2} x \quad \mu=\ddot{u}+\alpha_{1} \dot{u}+\alpha_{2} u
$$

6. With these definitions, we can replace the error dynamics

$$
\ddot{e}+\alpha_{1} \dot{e}+\alpha_{2} e=C \xi
$$

and the state equation for ξ is given by

$$
\begin{aligned}
\dot{\xi} & =\dddot{x}+\alpha_{1} \ddot{x}+\alpha_{2} \dot{x}=\left(A \ddot{x}+B \ddot{u}+B_{1} \ddot{w}\right)+\alpha_{1}\left(A \dot{x}+B \dot{u}+B_{1} \dot{w}\right)+\alpha_{2}\left(A x+B u+B_{1} w\right) \\
& =A\left(\ddot{x}+\alpha_{1} \dot{x}+\alpha_{2} x\right)+B\left(\ddot{u}+\alpha_{1} \dot{u}+\alpha_{2} u\right)+B_{1}\left(\ddot{w}+\alpha_{1} \dot{w}+\alpha_{2} w\right) \\
& =A \xi+B \mu
\end{aligned}
$$

7. By combining the errors e, \dot{e} and the error-space state ξ, we have

$$
\frac{d}{d t}\left[\begin{array}{l}
e \\
\dot{e} \\
\xi
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-\alpha_{2} & -\alpha_{1} & C \\
0 & 0 & A
\end{array}\right]\left[\begin{array}{l}
e \\
\dot{e} \\
\xi
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
B
\end{array}\right] \mu
$$

and, furthermore, we can design the control rule of the form

$$
\mu=-\left[\begin{array}{lll}
K_{2} & K_{1} & K_{0}
\end{array}\right]\left[\begin{array}{l}
e \\
\dot{e} \\
\xi
\end{array}\right]
$$

8. Let us find out the actual control input from μ

$$
\begin{aligned}
\ddot{u}+\alpha_{1} \dot{u}+\alpha_{2} u & =-K_{2} e-K_{1} \dot{e}-K_{0} \xi \\
& =-K_{2} e-K_{1} \dot{e}-K_{0}\left(\ddot{x}+\alpha_{1} \dot{x}+\alpha_{2} x\right)
\end{aligned}
$$

In other words, we have

$$
\left(\ddot{u}+K_{0} \ddot{x}\right)+\alpha_{1}\left(\dot{u}+K_{0} \dot{x}\right)+\alpha_{2}\left(u+K_{0} x\right)=-K_{2} e-K_{1} \dot{e}
$$

and, if we assume $\dot{r}=0$ such as step input, then there is no twice differentiations such as $\ddot{x}, \ddot{u}, \ddot{r}$, and $\alpha_{1}=1$ and $\alpha_{2}=0$. Thus we have

$$
\dot{u}+K_{0} \dot{x}=-K_{2} e-K_{1} \dot{e} \quad \rightarrow \quad \therefore \quad u=-K_{2} \int(y-r) d t-K_{1}(y-r)-K_{0} x
$$

9. (Example 7.35)
10. (Example 7.36) For the system

$$
H(s)=\frac{1}{s+3}
$$

with the state-variable description

$$
A=-3 \quad B=1 \quad C=1
$$

construct a controller with poles at $s=-5$ to track an input that satisfies $\dot{r}=0$.
(solution) The error-space system is

$$
\left[\begin{array}{c}
\dot{e} \\
\dot{\xi}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
0 & -3
\end{array}\right]\left[\begin{array}{l}
e \\
\xi
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] \mu
$$

where $e=y-r, \xi=\dot{x}=\dot{y}$ and $\mu=\dot{u}$.
If we take the desired characteristic equation to be

$$
\alpha_{c}(s)=(s+5)^{2}=s^{2}+10 s+25=s^{2}+\left(3+K_{0}\right) s+K_{1}
$$

where $\mu=-K_{1} e-K_{0} \xi$, where $K_{1}=25$ and $K_{0}=7$.
Thus we have the control input

$$
\mu=\dot{u} \quad \rightarrow \quad u=-25 \int(y-r) d t-7 y
$$

In addition,

$$
u=-25 \int(y-r) d t-7 y+N r
$$

if we choose $N=8$, then

$$
u=-25 \int(y-r) d t-7(y-r)+r
$$

(7장 숙제) 수업시간에 학습한 내용에 상응하는 61 개의 문제 중 10 개 풀어 기말고사에 제출

