
7 Estimator Design
• The control law designed in the previous section assumed that all the state-variables are available

for feedback.

• However, in most cases, not all the state-variables are measured.

• How to reconstruct all the state-variables of the system from a few measurement is suggested

• If the estimate of the state denoted by x̂ is used for the control law,

u = �Kx̂+ N̄r  u = �Kx+ N̄r
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• (7.7.1) Full-Order Estimators

1. One method of estimating the state is to construct a full-order model of the plant dynamics

˙̂x = Ax̂+Bu(t)  ẋ = Ax+Bu

where A, B and u(t) are known. Let us define the error in the estimator x̃ = x� x̂, then the
dynamics of this error system is given by

˙̃x = Ax̃ x̃(0) = x(0)� x̂(0)

if A is stable, the estimation error x̃! 0 as t!1

2. In order to influence the rate at which the state estimate converges to the true state, use
the feedback L(y � ŷ) = LC(x� x̂) in the estimator:

˙̂x = Ax̂+Bu(t) + L(y � ŷ) = Ax̂+Bu(t) + LC(x� x̂)

where L = [l1, l2, · · · , ln]T . Let us find the estimation error dynamics and characteristic equa-
tion:

˙̃x = (A� LC)x̃ det[sI � A+ LC] = 0

3. If we can choose L so that A� LC has stable and reasonably fast eigenvalues, x̃ will decay
to zero. If the desired estimator characteristic equation is

↵e(s) = (s� �1)(s� �2) · · · (s� �n) = det[sI � A+ LC]

then L can be calculated by comparing the both characteristic equations.
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4. (Example 7.24) Design an estimator of the system. Compute the estimator gain matrix that
will place both the estimator error poles at �10!o

ẋ =

"
0 1

�!2
o 0

#
x+

"
0

1

#
u y =

h
1 0

i
x

The desired estimator characteristic equation is

↵e(s) = (s+ 10!o)
2 = s2 + 20!os+ 100!2

o

The estimator and the error dynamics become

˙̂x = Ax̂+Bu+ L(y � Cx̂) and ˙̃x = (A� LC)x̃

Therefore the characteristic equation of the error dynamics becomes

det[sI � A+ LC] = det

("
s 0

0 s

#
�

"
0 1

�!2
o 0

#
+

"
l1

l2

# h
1 0

i)
= det

("
s+ l1 �1

!2
o + l2 s

#)
= s2 + l1s+ l2 + !2

o

Thus we have

L =

"
20!o

99!2
o

#

Note that the estimation error decays approximately five times (desired estimator pole �10!o)
faster than the decay of the controlled state itself (desired control pole �2!o), as we designed
it to do.
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5. (OCF, Observer Canonical Form) is dual form of the control canonical form (CCF). Thus we
have

ẋo = Aoxo +Bou y = Coxo

where

Ao = AT
c =

2

666664

�a1 1 0 0 · · · 0

�a2 0 1 0 · · · 0
... ... . . . 1

�an 0 0 0 · · · 0

3

777775
Bo = CT

c =

2

666664

b1

b2
...
bn

3

777775

Co = BT
c =

h
1 0 0 · · · 0

i
Do = Dc = 0

Like the CCF, the OCF can be obtained by reading the coefficients of the TF.
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6. One of the advantages of OCF is that the estimator gains can be obtained from it by inspec-
tion. For example

Ao � LCo =

2

664

�a1 � l1 1 0

�a2 � l2 0 1

�a3 � l3 0 0

3

775

which has the characteristic equation:

s3 + (a1 + l1)s
2 + (a2 + l2)s+ (a3 + l3) = 0

In other words, the estimator gain can be found by comparing the coefficients of character-
istic equation with ↵e(s) = s3 + ↵1s2 + ↵2s+ ↵3 such as

l1 = ↵1 � a1

l2 = ↵2 � a2

l3 = ↵3 � a3
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7. Observability refers to our ability to deduce information about all the modes of the system
by monitoring only the sensed outputs.

8. Unobservability results when some mode or subsystem is disconnected physically from the
output and therefore no longer appears in the measurements.

9. The mathematical test for determining observability is that the observability matrix must
have independent columns (full rank).

O =

2

66666664

C

CA

CA2

...
CAn�1

3

77777775

 C =
h
B AB A2B · · · An�1B

i

10. As with control-law design, the Ackermann’s formula for the estimator can be used as

L = ↵e(A)O
�1

2

666664

0

0
...
1

3

777775
 K =

h
0 · · · 0 1

i
C
�1↵c(A)
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• (7.7.2) Reduced-Order Estimators

1. The reduced-order estimator reduces the order of the estimator by the number of the sensed
(measurement) output.

2. Let us assume that the output equals the first state as y = xa, which is directly measured,
and xb, which represents the remaining state-variables that need to be estimated.

3. Let us partition the state-space representation (for example, OCF) as follows:

"
ẋa

ẋb

#
=

"
Aaa Aab

Aba Abb

#"
xa

xb

#
+

"
Ba

Bb

#
u

y =
h
1 0

i "xa
xb

#

The dynamics of the output y = xa and the unmeasured state-variables xb are given by

ẋb = Abay + Abbxb +Bbu ẏ = Aaay + Aabxb +Bau

If we rearrange the above equations in such a way that the known terms are collected into
the parenthesis, then we have

ẋb = Abbxb + (Abay +Bbu) (ẏ � Aaay � Bau) = Aabxb

ẋb = Abbxb + ut yt = Aabxb

where the known input ut = Abay +Bbu and the known measurement yt = ẏ � Aaay � Bau.
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4. Design the reduced-order estimator as follow:

˙̂xb = Abbx̂b + ut + L(yt � Aabx̂b)

= Abbx̂b + (Abay +Bbu) + L((ẏ � Aaay � Bau)� Aabx̂b)

= (Abb � LAab)x̂b + (Aba � LAaa)y + (Bb � LBa)u+ Lẏ

If ẏ can be removed by letting the new control state xc = x̂b � Ly, then we have

ẋc = (Abb � LAab)(xc + Ly) + (Aba � LAaa)y + (Bb � LBa)u

= (Abb � LAab)xc + (AbbL� LAabL+ Aba � LAaa)y + (Bb � LBa)u

x̂b = xc + Ly

5. The characteristic equation of the reduced-order estimator becomes

det[sI � Abb + LAab] = 0
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6. (Example 7.25) Design a reduced-order estimator with the estimation error pole at �10!o

"
ẋ1

ẋ2

#
=

"
0 1

�!2
o 0

#"
x1

x2

#
+

"
0

1

#
u y =

h
1 0

i "x1
x2

#

Since y = x1, the reduced-order estimator becomes

ẋc = (0� L)xc + (0� L2
� !2

o)y + (1� 0)u = �Lxc � (L2 + !2
o)y + u x̂b = xc + Ly

The characteristic equations of the above and the desired are

s+ L = 0 s+ 10!o = 0

Thus L = 10!o. The reduced-order estimator is obtained as

ẋc = �10!oxc � 101!2
oy + u x̂b = xc + 10!oy
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• (7.7.3) Estimator Pole Selection

1. The estimator poles can be chosen to be faster than controller poles by a factor of 2 to 6.
2. In optimal estimation theory, the best choice for estimator gain is dependent on the ratio of

sensor noise intensity v to process (disturbance) noise intensity w

3. This is best understood by re-examining the estimator equation:

˙̂x = Ax̂+Bu+ L(y � Cx̂)

to see how it interacts with the system when process noise w is present.
4. The plant with process noise and the measurement equation with sensor noise are described

by

ẋ = Ax+Bu+B1w y = Cx+ v

The estimation error (x̃ = x� x̂) equation becomes

˙̃x = (A� LC)x̃+B1w � Lv

where the sensor noise is multiplied by L and the process noise is not. Big estimator gain L
will bring a noise amplification.

5. The estimator SRL equation is

1 + qGe(�s)Ge(s) = 0  Ge(s) = C(sI � A)�1B1

where q is the ratio of input disturbance noise intensity to sensor noise intensity, and Ge is
the TF from the process noise to the sensor output equation.
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6. (Example 7.26) Draw the estimator SRL for the following system. Take the output to be a
noisy measurement of position with noise intensity ratio q:

"
ẋ1

ẋ2

#
=

"
0 1

�!2
o 0

#"
x1

x2

#
+

"
0

1

#
w y =

h
1 0

i "x1
x2

#
+ v

The TF from w to y becomes

Ge(s) =
1

s2 + !2
o

The SRL is obtained as q : 0!1

1 + qGe(�s)Ge(s) = 1 + q
1

(s2 + !2
o)(s

2 + !2
o)

= 0 ! s4 + 2!2
os

2 + !4
o + q = 0

We could choose two stable roots for a given value of q, for example, s = �3±j3.18 for q = 365.
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