
• (7.6.2) Symmetric Root Locus (SRL)

1. A most effective and widely used technique of linear control system design is the optimal
linear quadratic regulator (LQR).

2. The simplified version of the LQR problem is to find the control such that the performance
index

J =

Z
1

0
⇢
1

2
z2(t) +

1

2
u2(t)dt

is minimized for the system

ẋ = Ax+Bu z = C1x

where ⇢ is a weighting factor of the designer’s choice. The parameter ⇢ weighs the relative
cost of z2 with respect to the control effort u2 in the performance index equation.
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3. How to solve the optimization with constraint (Lagrange multiplier method)
a) Hamiltonian

H =
⇢

2
z2(t) +

1

2
u2(t) + �T (Ax+Bu) =

⇢

2
xTCT

1 C1x+
1

2
u2 + �T (Ax+Bu)

b) Optimal control input

@H

@x
= ⇢CT

1 C1x+ AT� = ��̇

@H

@�
= Ax+Bu = ẋ

@H

@u
= u+BT� = 0 ! u = �BT�

c) By letting � = Px and �̇ = Pẋ

@H

@x
= ⇢CT

1 C1x+ ATPx = �Pẋ = �P (Ax+Bu) ! ATP + PA� PBBTP + ⇢CT
1 C1 = 0

@H

@u
= u+BT�T = 0 ! u = �BTPx

d) Rearranging them, we have

u = �BTPx after solving ATP + PA� PBBTP + ⇢CT
1 C1 = 0

where P = P T > 0
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4. A remarkable fact is that the control law that minimizes J is given by linear state-feedback

u = �Kx be letting K = BTP

Here the optimal value K places the closed-loop poles at the stable roots of the symmetric
root-locus (SRL) equation:

1 + ⇢G0(�s)G0(s) = 0

where G0 is the open-loop TF from u to z:

G0(s) =
Z(s)

U(s)
= C1(sI � A)�1B =

N(s)

D(s)

In other words, we can write the SRL equation in the standard root-locus form

1 + ⇢
N(�s)N(s)

D(�s)D(s)
= 0

1) obtain the locus poles and zeros by reflecting the open-loop poles and zeros of the TF from
U to Z across the imaginary axis, and then
2) sketch the locus.
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5. (Example 7.20) Plot the SRL for the following servo speed control system with z = y:

ẏ = �ay + u ! G0(s) =
1

s+ a

The SRL equation for this example is

1 + ⇢G0(�s)G0(s) = 1 + ⇢
1

�s+ a

1

s+ a
= 0 ! a2 � s2 + ⇢ = 0 ! s = ±

p
a2 + ⇢

The SRL is shown in Fig. 7.20 and the optimal (stable) pole can be determined explicitly in
this case as

s = �

p
a2 + ⇢.

For this closed-loop pole, the controller should be

u = �(
p

a2 + ⇢� a)y ! ẏ = �(
p

a2 + ⇢)y
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(LQR) For given system ẏ = �ay + u with z = y

ẏ = �ay + u

z = y

the optimal control based on Lagrange multiplier method can be designed as follows:

u = �BTPx ATP + PA� PBBTP + ⇢CT
1 C1 = 0

= �py �ap+ p(�a)� p2 + ⇢ = 0

= �(
p
a2 + ⇢� a)y p = �a±

p
a2 + ⇢ (positive p is chosen)

The closed-loop system is obtained as

ẏ = �ay � (
p
a2 + ⇢� a)y = �(

p
a2 + ⇢)y

It is noted that the result of LQR is same with that of the SRL.
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6. (Example 7.21) Draw the SRL for the satellite system with z = y

"
ẋ1

ẋ2

#
=

"
0 1

0 0

#"
x1

x2

#
+

"
0

1

#
u z =

h
1 0

i "x1
x2

#
+ [0]u

The TF can be obtained as

G0(s) =
1

s2

The SRL equation for this example is

1 + ⇢G0(�s)G0(s) = 1 + ⇢
1

s2
1

s2
= 0 ! s4 + ⇢ = 0 ! s = 4

p
⇢

✓
±

1
p
2
± j

1
p
2

◆

The SRL is shown in Fig. 7.21 and the optimal (stable) poles can be determined explicitly

s1,2 = 4
p
⇢

✓
�

1
p
2
± j

1
p
2

◆

If ⇢ = 4.07, we have s1,2 = �1± j1.
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(LQR) The optimal control can be obtained as follows:

u = �BTPx ATP + PA� PBBTP + ⇢CT
1 C1 = 0

= �

h
p12 p22

i "x1
x2

# "
0 0

1 0

#"
p11 p12

p12 p22

#
+

"
p11 p12

p12 p22

#"
0 1

0 0

#
�

"
p11 p12

p12 p22

#"
0 0

0 1

#"
p11 p12

p12 p22

#
+

"
⇢ 0

0 0

#
= 0

"
�p212 + ⇢ p11 � p12p22

p11 � p22p12 2p12 � p222

#
= 0

= �

h
p
⇢

p
2 4
p
⇢
i "x1

x2

#
p12 =

p
⇢ p22 =

p
2 4
p
⇢

The closed-loop system is obtained as

ẋ = (A� BBTP )x

=

"
0 1

�
p
⇢ �

p
2 4
p
⇢

#
x

The characteristic equation of closed-loop system becomes

det(sI � A+BBTP ) = s(s+
p
2 4
p
⇢) +

p
⇢ = s2 +

p
2 4
p
⇢s+

p
⇢ = 0 ! s1,2 = 4

p
⇢

✓
�

1
p
2
± j

1
p
2

◆

It is noted that the result of LQR is same with that of the SRL.
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7. (Example 7.22) Draw the SRL for the linearized equations of the simple inverted pendulum

"
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h
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#
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The TF can be obtained as

G0(s) = �
s+ 2

s2 � 1

The SRL equation for this example is

1 + ⇢G0(�s)G0(s) = 1 + ⇢
�s+ 2

s2 � 1

s+ 2

s2 � 1
= 0 ! (s2 � 1)2 + ⇢(4� s2) = 0 !

s4 � (2 + ⇢)s2 + (1 + 4⇢) = 0 ! s2 =
(2 + ⇢)±

p
(2 + ⇢)2 � 4(1 + 4⇢)

2

SRL is shown in Fig. 7.24. If ⇢ = 1, we have stable closed-loop poles of s1,2 = �1.36± j0.606.
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8. The simplified version of LQR problem is to find the control such that performance index

J =

Z
1

0

1

2
xTQx+

1

2
uTRudt

is minimized for the system

ẋ = Ax+Bu.

How to solve the optimization with constraint (Lagrange multiplier method)
a) Hamiltonian

H =
1

2
xTQx+

1

2
uTRu+ �T (Ax+Bu)

b) Optimal control input

@H

@x
= Qx+ AT� = ��̇

@H

@�
= Ax+Bu = ẋ

@H

@u
= Ru+BT� = 0 ! u = �R�1BT�

c) By letting � = Px and �̇ = Pẋ

@H

@x
= Qx+ ATPx = �Pẋ = �P (Ax+Bu) ! ATP + PA� PBR�1BTP +Q = 0

@H

@u
= Ru+BT�T = 0 ! u = �R�1BTPx
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d) Rearranging them, we have

u = �Kx with K = R�1BTP after solving ATP + PA� PBR�1BTP +Q = 0

where

Qii = 1/maximum acceptable value of [x2i ]

Rii = 1/maximum acceptable value of [u2i ]

e) MATLAB function, K = lqr(A,B,Q,R),
f) It is noted that Q = ⇢CT

1 C1 and R = 1 in the SRL cases.

163



9. Limiting behavior of LQR Regulator Poles (See Fig. 7.26)

J =

Z
1

0
⇢
1

2
z2(t) +

1

2
u2(t)dt

– Expensive control (⇢ ! 0) : It penalizes the use of control energy. If the control is expen-
sive, the optimal control does not move any of the open-loop poles except for those that
are in the RHP

– Cheap control (⇢ ! 1) : Arbitrary control effort may be used by the optimal control law.
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10. Robustness Properties of LQR Regulators
– Nyquist plot for LQR design avoids a circle of unity radius centered at the -1 point as

shown in Fig. 7.23.
– This leads to extraordinary phase and gain margin properties.
– Consider the return difference equation defined as the ratio between i(t)� r(t) and i(t)

r(t) = �K(sI � A)�1Bi(t) !
i(t)� r(t)

i(t)
= 1 +K(sI � A)�1B

– The magnitude of return difference equation must satisfy

|1 +K(j!I � A)�1B| � 1

(Re(L(j!)) + 1)2 + (Im(L(j!)))2 � 1

where

L(j!) = K(j!I � A)�1B
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– See Fig. 7.89. In other words,

1

2
< GM < 1 PM > 60�

– These margins are remarkable, and it is not realistic to assume that they can be achieved
in practice, because of the presence of modeling errors and lack of sensors.
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