(Question: 영구자석형 dc 모터의 모델링 : Mathematical Modeling of PM DC Motors)

4 Time-Domain Specifications

Consider a typical unit step response

- The rise time t_{r} is the time it takes the system to reach the vicinity of its new set point
- The settling time t_{s} is the time it takes the system transients to decay
- The overshoot M_{p} is the maximum amount that system overshoots its final value divided by its final value (and is often expressed as a percentage)
- The peak time t_{p} is the time it takes the system to reach the maximum overshoot point.

1. Rise Time

- For second-order system, a rise time can be found by approximating the curve at $\zeta=0.5$. The rise time from $y=0.1$ to $y=0.9$ is

$$
\therefore \quad t_{r} \approx \frac{1.8}{\omega_{n}}
$$

2. Overshoot and Peak Time

- From the step response for a typical second-order system, we have

$$
\begin{aligned}
Y(s) & =H(s) \frac{1}{s} \\
& =\frac{\omega_{n}^{2}}{\left(s+\zeta \omega_{n}\right)^{2}+\omega_{n}^{2}\left(1-\zeta^{2}\right)} \frac{1}{s} \\
& =\frac{\omega_{n}^{2}}{(s+\sigma)^{2}+\omega_{d}^{2}} \frac{1}{s} \\
& =\frac{C_{1}}{s}+\frac{C_{2}(s+\sigma)+C_{3} \omega_{d}}{(s+\sigma)^{2}+\omega_{d}^{2}}
\end{aligned}
$$

where $C_{1}=1, C_{2}=-1$, and $C_{3}=-\frac{\zeta}{\sqrt{1-\zeta^{2}}}$. Thus we have

$$
\begin{aligned}
Y(s) & =\frac{1}{s}-\frac{(s+\sigma)}{(s+\sigma)^{2}+\omega_{d}^{2}}-\frac{\zeta}{\sqrt{1-\zeta^{2}}} \frac{\omega_{d}}{(s+\sigma)^{2}+\omega_{d}^{2}} \\
y(t) & =1-e^{-\sigma t} \cos \omega_{d} t-\frac{\zeta}{\sqrt{1-\zeta^{2}}} e^{-\sigma t} \sin \omega_{d} t \quad \text { for } t \geq 0 \\
& =1-e^{-\sigma t}\left(\cos \omega_{d} t+\frac{\zeta}{\sqrt{1-\zeta^{2}}} \sin \omega_{d} t\right)
\end{aligned}
$$

- When $y(t)$ reaches its maximum value, its derivative will be zero:

$$
\begin{aligned}
\dot{y}(t) & =\sigma e^{-\sigma t}\left(\cos \omega_{d} t+\frac{\zeta}{\sqrt{1-\zeta^{2}}} \sin \omega_{d} t\right)-e^{-\sigma t}\left(-\omega_{d} \sin \omega_{d} t+\frac{\zeta \omega_{d}}{\sqrt{1-\zeta^{2}}} \cos \omega_{d} t\right)=0 \\
& =e^{-\sigma t}\left(\frac{\zeta \sigma}{\sqrt{1-\zeta^{2}}}+\omega_{d}\right) \sin \omega_{d} t=0
\end{aligned}
$$

This occurs when $\sin \omega_{d} t=0$, so the peak time is obtained as

$$
\omega_{d} t_{p}=\pi \quad \rightarrow \quad \therefore \quad t_{p}=\frac{\pi}{\omega_{d}}
$$

- The maximum overshoot at $t=t_{p}$ is

$$
\begin{aligned}
y\left(t_{p}\right) & =1-e^{-\sigma t_{p}}\left(\cos \omega_{d} t_{p}+\frac{\zeta}{\sqrt{1-\zeta^{2}}} \sin \omega_{d} t_{p}\right) \\
& =1-e^{-\sigma t_{p}}\left(\cos \pi+\frac{\zeta}{\sqrt{1-\zeta^{2}}} \sin \pi\right) \\
& =1+e^{-\sigma t_{p}} \\
& =1+e^{-\frac{\zeta \pi}{\sqrt{1-\zeta^{2}}}} \quad \rightarrow \quad \therefore \quad M_{p}=e^{-\frac{\zeta \pi}{\sqrt{1-\zeta^{2}}}}
\end{aligned}
$$

where it is noted that the maximum overshoot is only function of damping ratio, irrespective of the natural frequency. For example, $M_{p}=0.16$ (16% overshoot) for $\zeta=0.5, M_{p}=0.1$ (10% overshoot) for $\zeta=0.6$, and $M_{p}=0.05$ (5% overshoot) for $\zeta=0.7$

3. Settling Time

- Typical step response

$$
\begin{aligned}
Y(s) & =1-e^{-\sigma t}\left(\cos \omega_{d} t+\frac{\zeta}{\sqrt{1-\zeta^{2}}} \sin \omega_{d} t\right) \quad \text { for } t \geq 0 \\
& =1-\frac{e^{-\sigma t}}{\sqrt{1-\zeta^{2}}} \sin \left(\omega_{d} t+\tan ^{-1} \frac{\sqrt{1-\zeta^{2}}}{\zeta}\right) \\
& =1-\frac{e^{-\sigma t}}{\sqrt{1-\zeta^{2}}} \cos \left(\omega_{d} t-\tan ^{-1} \frac{\zeta}{\sqrt{1-\zeta^{2}}}\right)
\end{aligned}
$$

where it is noted that

$$
\begin{aligned}
A \sin \alpha+B \cos \alpha & =\sqrt{A^{2}+B^{2}} \sin (\alpha+\beta) & & \beta=\tan ^{-1} \frac{B}{A} \\
& =\sqrt{A^{2}+B^{2}} \cos (\alpha-\gamma) & & \gamma=\tan ^{-1} \frac{A}{B}
\end{aligned}
$$

- Envelope exponentials are

$$
1-\frac{e^{-\sigma t}}{\sqrt{1-\zeta^{2}}} \quad \text { and } \quad 1+\frac{e^{-\sigma t}}{\sqrt{1-\zeta^{2}}}
$$

Indeed, if the settling time is specified as $c_{t s}\left(c_{t s}=0.05\right.$ for $5 \%, c_{t s}=0.03$ for 3%, and $c_{t s}=0.01$ for 1%), then we have

$$
\begin{aligned}
& 1-\frac{e^{-\sigma t_{s}}}{\sqrt{1-\zeta^{2}}}=1-c_{t s} \\
& 1+\frac{e^{-\sigma t_{s}}}{\sqrt{1-\zeta^{2}}}=1+c_{t s}
\end{aligned}
$$

Thus we have an exact settling time as follow:

$$
\frac{e^{-\sigma t_{s}}}{\sqrt{1-\zeta^{2}}}=c_{t s} \quad \rightarrow \quad \therefore \quad t_{s}=-\frac{1}{\zeta \omega_{n}} \ln c_{t s} \sqrt{1-\zeta}
$$

- On the other hand, when the decaying exponential reaches 1%, we can get the "approximate settling time (1% criterion)" as follow:

$$
e^{-\sigma t_{s}}=e^{-\zeta \omega_{n} t_{s}}=0.01 \quad \rightarrow \quad \therefore \quad t_{s} \approx \frac{-\ln 0.01}{\zeta \omega_{n}}=\frac{4.6}{\sigma}=\frac{4.6}{\zeta \omega_{n}}
$$

4. Design Synthesis: for specified values of t_{r}, M_{p} and t_{s},

$$
\omega_{n} \geq \frac{1.8}{t_{r}} \quad \text { and } \quad \zeta \geq \zeta\left(M_{p}\right) \quad \text { using } M_{p}=e^{-\frac{\zeta \pi}{\sqrt{1-\zeta^{2}}}} \quad \text { and } \quad \sigma \geq \frac{4.6}{t_{s}} \quad \text { or } \sigma \geq-\frac{1}{t_{s}} \ln c_{t s} \sqrt{1-\zeta}
$$

These inequalities can be graphed in the s-plane and they will be used in later chapters to guide the selections of pole and zero locations to meet control system specifications for dynamic response.

(a)

(b)

(c)

(d)
5. For a first-order system and its step response,

$$
\begin{aligned}
H(s) & =\frac{\sigma}{s+\sigma} \\
Y(s) & =H(s) \frac{1}{s}=\frac{\sigma}{s(s+\sigma)}=\frac{1}{s}-\frac{1}{s+\sigma} \\
y(t) & =1-e^{-\sigma t} \quad \text { for } t \geq 0
\end{aligned}
$$

Specifications for 1 st-order system with time constant $\tau=\frac{1}{\sigma}$

$$
t_{s}=\frac{4.6}{\sigma}=4.6 \tau \quad \text { and } \quad t_{r}=\frac{\ln 0.9-\ln 0.1}{\sigma}=\frac{2.2}{\sigma}=2.2 \tau \quad \text { and } \quad M_{p}=0
$$

6. (Example 3.27, Transformation of the Specifications to the s-Plane) Find the allowable region in the s-plane when $t_{r} \leq 0.6[s], M_{p} \leq 0.1$ and $t_{s} \leq 3[s]$

$$
\omega_{n} \geq \frac{1.8}{t_{r}}=3.0 \quad \text { and } \quad \zeta \geq 0.6 \quad \text { and } \quad \sigma \geq \frac{4.6}{3}=1.5
$$

For the allowable region, see the Fig. 3.26

