2 System Modeling Diagrams

- Graphical simplification using the TF is easier and more informative than algebraic manipulation
- See the figure 3.9 for series, parallel, and feedback manipulations

$\frac{Y_{2}(s)}{U_{1}(s)}=G_{2} G_{1}$
(a)

$$
\frac{Y(s)}{U(s)}=G_{2}+G_{1}
$$

(b)

$$
\frac{Y(s)}{R(s)}=\frac{G_{1}}{1+G_{2} G_{1}}
$$

(c)

- The gain of a single-loop negative feedback system is given by the forward gain divided by the sum of 1 plus the loop gain

$$
Y(s)=\frac{G_{1}(s)}{1+G_{2}(s) G_{1}(s)} R(s)
$$

- See the figure 3.10 for conversions

(a)

(b)

(c)

Copyright ©2015 Pearson Education, All Rights Reserved

- A system without a component in the feedback path is referred to as a unity feedback system
- (Example 3.22, TF from a Simple Block Diagram) Find the TF of the system shown in Fig. 3.11

(a)

(b)

$$
T(s)=\frac{Y(s)}{R(s)}=\frac{\frac{1}{s}\left(2+\frac{4}{s}\right)}{1+\frac{1}{s}\left(2+\frac{4}{s}\right)}=\frac{2 s+4}{s^{2}+2 s+4}
$$

- (Example 3.23, TF from the Block Diagram) Find the TF of the system shown in Fig. 3.12

(a)

(b)

(c)

Copyright ©2015 Pearson Education, All Rights Reserved

- (Example 3.24, TF of a Simple System using Matlab Simulink) Find the TF of the system shown in Fig. 3.13 with $G_{1}(s)=2, G_{2}(s)=\frac{4}{s}, G_{4}(s)=\frac{1}{s}$ and $G_{6}(s)=1$

- Mason's rule is useful technique for determining TFs of complicated interconnected systems. (out of the scope of the textbook, but you can get materials in Appendix W3.2.3 online at www.pearsonglobaleditions.com)

3 Effect of Pole Locations

1. Real Poles

- Consider the following simple TF

$$
H(s)=\frac{1}{s+\sigma}
$$

where the pole is located at $s=-\sigma$ since it is the point where $H(s)$ is infinity.

- The impulse response of the TF is

$$
h(t)=e^{-\sigma t} \quad \text { for } t \geq 0
$$

- When $\sigma>0$, the pole is located at $s<0$, the exponential expression decays and we say the impulse response is "stable"
- If $\sigma<0$, the pole is to the right of the origin. Because the exponential expression here grows with time, the impulse response is referred to as "unstable".

(b)

Copyright ©2015 Pearson Education, All Rights Reserved

- Let us introduce the time constant

$$
\tau=\frac{1}{\sigma} \quad \leftarrow \quad h(t)=e^{-\sigma t}=e^{-\frac{t}{\tau}} \quad \text { for } \quad t \geq 0
$$

- The time constant is a measure of the rate of decay (or a measure for the speed of response of the system). The straight line is tangent to the exponential curve at $t=0$ and terminates $t=\tau$. For example, 63% at $t=\tau, 86 \%$ at $t=2 \tau, 95 \%$ at $t=3 \tau, 98 \%$ at $t=4 \tau$, and 99% at $t=5 \tau$.
- (Example 3.25, Real Roots) Discuss about the impulse response of the following system:

$$
H(s)=\frac{2 s+1}{s^{2}+3 s+2}
$$

a) poles: $s=-1$ and $s=-2$ since they are points that $H(s)=\infty$
b) zeros: $s=-0.5$ and $s=\infty$ since they are points that $H(s)=0$
c) partial fraction expression:

$$
H(s)=\frac{2 s+1}{(s+1)(s+2)}=\frac{-1}{s+1}+\frac{3}{s+2}
$$

d) impulse response:

$$
h(t)=3 e^{-2 t}-e^{-t} \quad \text { for } t \geq 0
$$

A sketch of these pole locations and corresponding natural responses is given in Fig. 3.16, along with other pole locations including complex ones.

a) Poles farther to the left in the s-plane are associated with natural signals that decay faster than those associated with poles closer to the imaginary axis.
b) In the response of $h(t)=3 e^{-2 t}-e^{-t}$, the fast $3 e^{-2 t}$ term dominates the early part of the time history and the $-e^{-t}$ term is the primary contributor later on.

2. Complex Poles

- Consider the typical second-order system with $0<\zeta<1$:

$$
\begin{aligned}
H(s) & =\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}} \\
& =\frac{\omega_{n}^{2}}{\left(s+\zeta \omega_{n}\right)^{2}+\omega_{n}^{2}\left(1-\zeta^{2}\right)}
\end{aligned}
$$

a) complex poles : $s=-\zeta \omega_{n} \pm j \omega_{n} \sqrt{1-\zeta^{2}}$
b) damping ratio $: \zeta$
c) Neper frequency : $\sigma=\zeta \omega_{n}$
d) undamped natural frequency : ω_{n}
e) damped natural frequency: $\omega_{d}=\omega_{n} \sqrt{1-\zeta^{2}}$
f) The poles of this TF are located at a radius ω_{n} in the s-plane and at an angle $\theta=\sin ^{-1} \zeta$, as shown in Figs. 3.18 and 3.20

- Impulse response becomes

$$
\begin{aligned}
H(s) & =\frac{\omega_{n}^{2}}{\left(s+\zeta \omega_{n}\right)^{2}+\omega_{n}^{2}\left(1-\zeta^{2}\right)} \\
& =\frac{\omega_{n}^{2}}{\omega_{d}} \frac{\omega_{d}}{\left(s+\zeta \omega_{n}\right)^{2}+\omega_{d}^{2}} \\
& =\frac{\omega_{n}}{\sqrt{1-\zeta^{2}}} \frac{\omega_{d}}{\left(s+\zeta \omega_{n}\right)^{2}+\omega_{d}^{2}} \quad \rightarrow \quad \mathcal{L}\left[e^{-\sigma t} f(t)\right]=F(s+\sigma) \\
h(t) & =\frac{\omega_{n}}{\sqrt{1-\zeta^{2}}} e^{-\zeta \omega_{n} t} \sin \omega_{d} t \quad \text { for } \quad t \geq 0
\end{aligned}
$$

a) Actual frequency ω_{d} decreases slightly as the damping ratio increases
b) Negative real part of the pole $\sigma=\zeta \omega_{n}$ determines the decay rate of an exponential envelope $\left(\frac{\omega_{n}}{\sqrt{1-\zeta^{2}}} e^{-\zeta \omega_{n} t}\right.$ and $\left.-\frac{\omega_{n}}{\sqrt{1-\zeta^{2}}} e^{-\zeta \omega_{n} t}\right)$ that multiplies the sinusoid as shown in Fig. 3.21

- Stability
a) If $\sigma<0$ (and the pole is in the RHP), then the natural response will grow with time, so, as defined earlier, the system is said to be unstable.
b) If $\sigma=0$, the natural response neither grows nor decays, so stability is open to debate.
c) If $\sigma>0$, the natural response decays, so the system is stable.
- (Example 3.26, Oscillatory Time Response) Discuss the correlation b/w the poles and impulse response of the system:

$$
\begin{aligned}
H(s) & =\frac{2 s+1}{s^{2}+2 s+5}=\frac{2 s+1}{(s+1)^{2}+2^{2}} \\
& =2 \frac{s+1}{(s+1)^{2}+2^{2}}-\frac{1}{2} \frac{2}{(s+1)^{2}+2^{2}} \\
h(t) & =2 e^{-t} \cos 2 t-\frac{1}{2} e^{-t} \sin 2 t \quad \text { for } t \geq 0 \\
& =\frac{\sqrt{17}}{2} e^{-t} \cos \left(2 t+\tan ^{-1} \frac{1}{4}\right)
\end{aligned}
$$

a) $\omega_{n}=\sqrt{5}=2.24$ from $\omega_{n}^{2}=5$
b) $\zeta=\frac{1}{\sqrt{5}}=0.447$ from $2 \zeta \omega_{n}=2$
c) $\omega_{d}=2$ from $\omega_{d}=\omega_{n} \sqrt{1-\zeta^{2}}$
d) both envelopes are $\frac{\sqrt{17}}{2} e^{-t}$ and $-\frac{\sqrt{17}}{2} e^{-t}$
e) impulse response is plotted in Fig. 3.22

