2 System Modeling Diagrams

e Graphical simplification using the TF is easier and more informative than algebraic manipulation

e See the figure 3.9 for series, parallel, and feedback manipulations

R(s) U,(s) Yi(s)
»! Gl Gl O Y(S)
Uy(s) Ys(s) Us) ¥ )
o—— G, > G, O o—
> G2 T G2 <
'(S,) ~ G,G, (s) — G, + G, (s) |

Us) Rs) 1+ GG,

(a) (b) (©)
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e The gain of a single-loop negative feedback system is given by the forward gain divided by the
sum of 1 plus the loop gain

_ G1($)
1 + GQ(S)Gl(S)

Y(s) R(s)
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e See the figure 3.10 for conversions

U,o 7 » G oY, = U,o— G, oY),
Pick-off ]
: 1
t A
poin G
(a)
+ _ +
U')O_’ GI
U, -
(b)
+ U Y, . 1+
R 0— G, oY = Ro—gGg G, — G, oY

(c)
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e A system without a component in the feedback path is referred to as a unity feedback system
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e (Example 3.22, TF from a Simple Block Diagram) Find the TF of the system shown in Fig. 3.11

> 2
+
+ +
Ro—-@ o 4 N oy

(a)

N 2s+4 o 1
Ro—»@—» ST "+ oy
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e (Example 3.23, TF from the Block Diagram) Find the TF of the system shown in Fig. 3.12

G()
T,
G, Gs Y

Gb
+ G, ’ 4 N+
. O_{EP- =GG, | | 1 L2 bl i

G,
o—~(+ ) il G G \
R > - G,G; 2 5 . Y
Gy ‘J

(c)
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e (Example 3.24, TF of a Simple System using Matlab Simulink) Find the TF of the system shown
in Flg 3.13 with Gl(S) = 2, GQ(S) = %, G4(S) = % and GG(S) =1

> G
+
+ +
RO_’@ > G2 G4 oY
=

e Mason’s rule is useful technique for determining TFs of complicated interconnected systems. (out
of the scope of the textbook, but you can get materials in Appendix W3.2.3 online
at www.pearsonglobaleditions.com)
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3 Effect of Pole Locations

1. Real Poles

e Consider the following simple TF

1
H(s) =
(5) s+o
where the pole is located at s = —c since it is the point where H(s) is infinity.

e The impulse response of the TF is
h(t)=e" fort>0

e When o > 0, the pole is located at s < 0, the exponential expression decays and we say the
impulse response is “stable”

e If 0 < 0, the pole is to the right of the origin. Because the exponential expression here grows
with time, the impulse response is referred to as “unstable”.
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e Let us introduce the time constant
1 —ot —L
== Y hit)y=e %" =¢e¢ - for t>0
o

e The time constant is a measure of the rate of decay (or a measure for the speed of response
of the system). The straight line is tangent to the exponential curve at ¢t = 0 and terminates

t = 7. For example, 63% at t = 7, 86% at t = 27, 95% at t = 37, 98% at t = 47, and 99% at
t = 5T.
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e (Example 3.25, Real Roots) Discuss about the impulse response of the following system:

2s+1

H(s) = 22"~
)= 373572

a) poles: s = —1 and s = —2 since they are points that H(s) = o
b) zeros: s = —0.5 and s = oo since they are points that H(s) =0
c) partial fraction expression:

2s+1 —1 3

H(s) = (s+1)(s+2) :s—|—1+3—|—2

d) impulse response:

h(t) =3¢ * —e'  fort>0

4 Im(s)

N .
-1 1 Re(s)
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LHP

A sketch of these pole locations and corresponding natural responses is given in Fig. 3.16,
along with other pole locations including complex ones.

Stable

el

A Im(s)

Unstable

s

RHP

s

yright ©2015 Pearson Education, All Rights Reserved

=

Re(s)

5

a) Poles farther to the left in the s-plane are associated with natural signals that decay
faster than those associated with poles closer to the imaginary axis.

b) In the response of h(t) = 3e% — et the fast 3e7* term dominates the early part of the
time history and the —e™! term is the primary contributor later on.
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2. Complex Poles
e Consider the typical second-order system with 0 < ( <1 :

w2

H(s) = n
()= st 1o
Wy

(s 4 Cwn)? + wi(l = ()

a) complex poles : s = —(w, £ jw,\/1 — 2

b) damping ratio : ¢

¢) Neper frequency : ¢ = (w,

d) undamped natural frequency : w,

e) damped natural frequency : wg; = w,v/1 — (?

f) The poles of this TF are located at a radius w, in the s-plane and at an angle § = sin"! (,
as shown in Figs. 3.18 and 3.20

t Im(s)

Im(s)

wy 45°

30°

Im(s)

Im(s)

17.59

Re(s)

£=0.707

Re(s)

Re(s)
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h(t)

e Impulse response becomes

w2

He) = armprraa—o
wfl Wy
wq (5 + Cwn)? + w2
_ “d o L] = Fs + o)
V1= (2 (5 + Cwn)? + w3
h(t) = n__ewitsinwgt  for >0

1— (2

a) Actual frequency w, decreases slightly as the damping ratio increases

b) Negative real part of the pole 0 = (w, determines the decay rate of an exponential en-
e~¢“n") that multiplies the sinusoid as shown in Fig. 3.21

Wn

velope ( me—@znt and —\/%

—0.6

- 0.8

0 5 10 15 20 25 30

Time (sec)
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e Stability

a) If 0 < 0 (and the pole is in the RHP), then the natural response will grow with time, so,
as defined earlier, the system is said to be unstable.

b) If 0 = 0, the natural response neither grows nor decays, so stability is open to debate.

c) If o > 0, the natural response decays, so the system is stable.
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h(r)

e (Example 3.26, Oscillatory Time Response) Discuss the correlation b/w the poles and impulse
response of the system:

H(s) 25 +1 25+ 1

S) = —=

$2+2s+5  (s+1)2+ 22
s+1 1 2

(s+1)2+22 2(s+1)2+2?
1
h(t) = 2e " cos 2t — ée_t sin2t fort >0

1
e cos (215 +tan~! Z)

~J

a) w, =5 =224 from w2 =5
b) ¢ = \/Lg = 0.447 from 2(w, = 2

c) wyg =2 from wy = w,\/1— (2

d) both envelopes are \/Tﬁe_t and —\/Tﬁe_t

e) impulse response is plotted in Fig. 3.22
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Time (sec)
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