4. Properties of Laplace Transforms (LT) (see Table A. 1 in Appendix A (page 866))
a) Superposition

$$
\begin{aligned}
\mathcal{L}\left[\alpha f_{1}(t)+\beta f_{2}(t)\right] & =\int_{0}^{\infty}\left(\alpha f_{1}(t)+\beta f_{2}(t)\right) e^{-s t} d t \\
& =\alpha \int_{0}^{\infty} f_{1}(t) e^{-s t} d t+\beta \int_{0}^{\infty} f_{2}(t) e^{-s t} d t \\
& =\alpha F_{1}(s)+\beta F_{2}(s)
\end{aligned}
$$

b) Time Delay $f_{1}(t)=t(t-\lambda)$ with a time delay of λ

$$
\begin{aligned}
F_{1}(s) & =\int_{0}^{\infty} f(t-\lambda) e^{-s t} d t \quad \text { with } \quad \eta=t-\lambda \\
& =\int_{0}^{\infty} f(\eta) e^{-s(\lambda+\eta)} d \eta \\
& =e^{-\lambda s} \int_{0}^{\infty} f(\eta) e^{-s \eta} d \eta \\
& =e^{-\lambda s} F(s)
\end{aligned}
$$

c) Time Scaling $f_{1}(t)=f(a t)$ with a scaling factor a

$$
\begin{aligned}
F_{1}(s) & =\int_{0}^{\infty} f(a t) e^{-s t} d t \quad \text { with } \quad \eta=a t \\
& =\int_{0}^{\infty} f(\eta) e^{-\frac{s \eta}{a}} \frac{1}{a} d \eta \quad \text { with } \quad s^{\prime}=\frac{s}{a} \\
& =\frac{1}{a} F\left(s^{\prime}\right)=\frac{1}{a} F\left(\frac{s}{a}\right)
\end{aligned}
$$

d) Shift in Frequency $f_{1}(t)=e^{-a t} f(t)$

$$
\begin{aligned}
F_{1}(s) & =\int_{0}^{\infty} e^{-a t} f(t) e^{-s t} d t \\
& =\int_{0}^{\infty} f(t) e^{-(s+a) t} d t \quad \text { with } \quad s^{\prime}=s+a \\
& =F\left(s^{\prime}\right) \\
& =F(s+a)
\end{aligned}
$$

e) Differentiation

$$
\begin{aligned}
\mathcal{L}[\ddot{f}(t)] & =\int_{0}^{\infty} \ddot{f}(t) e^{-s t} d t=\int_{0}^{\infty} e^{-s t} \ddot{f}(t) d t \\
& =\left.e^{-s t} \dot{f}(t)\right|_{0} ^{\infty}-(-s) \int_{0}^{\infty} e^{-s t} \dot{f}(t) d t \\
& =\left.e^{-s t} \dot{f}(t)\right|_{0} ^{\infty}+s\left[\left.e^{-s t} f(t)\right|_{0} ^{\infty}-(-s) \int_{0}^{\infty} e^{-s t} f(t) d t\right] \\
& =0-\dot{f}(0)+s[0-f(0)+s F(s)] \\
& =s^{2} F(s)-s f(0)-\dot{f}(0) \\
\mathcal{L}\left[f^{(m)}(t)\right] & =s^{m} F(s)-s^{m-1} f(0)-s^{m-2} \dot{f}(0)-\cdots-f^{(m-1)}(0)
\end{aligned}
$$

where $f^{(m)}(t)$ denotes the m th derivative w.r.t. time
f) Integration $f_{1}(t)=\int_{0}^{t} f(\eta) d \eta$

$$
\begin{aligned}
F_{1}(s) & =\int_{0}^{\infty}\left[\int_{0}^{t} f(\eta) d \eta\right] e^{-s t} d t \\
& =\left.\left[\int_{0}^{t} f(\eta) d \eta\right] \frac{e^{-s t}}{-s}\right|_{0} ^{\infty}-\int_{0}^{\infty} f(t) \frac{e^{-s t}}{-s} d t \\
& =\frac{1}{s} F(s)
\end{aligned}
$$

g) Convolution $f_{1}(t) \star f_{2}(t)=\int_{0}^{t} f_{1}(t-\tau) f_{2}(\tau) d \tau$

$$
\mathcal{L}\left[f_{1}(t) \star f_{2}(t)\right]=F_{1}(s) F_{2}(s)
$$

h) Time Product

$$
\mathcal{L}\left[f_{1}(t) f_{2}(t)\right]=\frac{1}{2 \pi j}\left[F_{1}(s) \star F_{2}(s)\right]
$$

i) Multiplication by Time $f_{1}(t)=t f(t): F_{1}(s)=\mathcal{L}[t f(t)]=-\frac{d}{d s} F(s)$

$$
\begin{aligned}
\frac{d}{d s} F(s) & =\frac{d}{d s} \int_{0}^{\infty} f(t) e^{-s t} d t \\
& =\int_{0}^{\infty} f(t)(-t) e^{-s t} d t \\
& =-\int_{0}^{\infty}[t f(t)] e^{-s t} d t \quad \text { with } \quad f^{\prime}(t)=t f(t) \\
& =-\mathcal{L}\left[f^{\prime}(t)\right]=-\mathcal{L}[t f(t)]
\end{aligned}
$$

5. Inverse Laplace Transform (LT) by Partial-Fraction Expansion

- Consider TF

$$
\begin{aligned}
F(s) & =\frac{b_{1} s^{m}+b_{2} s^{m-1}+\cdots+b_{m} s+b_{m+1}}{s^{n}+a_{1} s^{n-1}+\cdots+a_{n-1} s+a_{n}} \\
& =K \frac{\left(s-z_{1}\right)\left(s-z_{2}\right) \cdots\left(s-z_{m}\right)}{\left(s-p_{1}\right)\left(s-p_{2}\right) \cdots\left(s-p_{n}\right)} \\
& =\frac{C_{1}}{s-p_{1}}+\frac{C_{2}}{s-p_{2}}+\cdots+\frac{C_{n}}{s-p_{n}}
\end{aligned}
$$

where $s=z_{i}$ and $s=p_{i}$ are referred to as a zero and a pole of the TF, respectively.

- By multiplying both sides by the factor $\left(s-p_{1}\right)$, we can get C_{1} term as follow:

$$
\left(s-p_{1}\right) F(s)=C_{1}+C_{2} \frac{s-p_{1}}{s-p_{2}}+\cdots+C_{n} \frac{s-p_{1}}{s-p_{n}} \quad \rightarrow \quad C_{1}=\left.\left(s-p_{1}\right) F(s)\right|_{s=p_{1}}
$$

Thus i th coefficient can be expressed in a similar form:

$$
C_{i}=\left.\left(s-p_{i}\right) F(s)\right|_{s=p_{i}} \quad \text { for } \quad i=1,2,3, \cdots, n
$$

where it is called the cover-up method.
(Example 3.11, Partial-Fraction Expansion) Find $y(t)$ from

$$
\begin{aligned}
Y(s) & =\frac{(s+2)(s+4)}{s(s+1)(s+3)} \\
& =\frac{C_{1}}{s}+\frac{C_{2}}{s+1}+\frac{C_{3}}{s+3}
\end{aligned}
$$

where

$$
\begin{aligned}
& C_{1}=\left.\frac{(s+2)(s+4)}{(s+1)(s+3)}\right|_{s=0}=\frac{8}{3} \\
& C_{2}=\left.\frac{(s+2)(s+4)}{s(s+3)}\right|_{s=-1}=-\frac{3}{2} \\
& C_{3}=\left.\frac{(s+2)(s+4)}{s(s+1)}\right|_{s=-3}=-\frac{1}{6}
\end{aligned}
$$

The solution is obtained as follows:

$$
\therefore \quad y(t)=\frac{8}{3}-\frac{3}{2} e^{-t}-\frac{1}{6} e^{-3 t} \quad \text { for } \quad t \geq 0
$$

6. The Final Value Theorem

- Consider the LT of differentiation

$$
\begin{aligned}
\int_{0}^{\infty} \dot{y}(t) e^{-s t} d t & =s Y(s)-y(0) \\
\lim _{s \rightarrow 0} \int_{0}^{\infty} \dot{y}(t) e^{-s t} d t & =\lim _{s \rightarrow 0}[s Y(s)-y(0)] \\
\int_{0}^{\infty} \dot{y}(t) d t & =\lim _{s \rightarrow 0}[s Y(s)-y(0)] \\
y(\infty)-y(0) & =\lim _{s \rightarrow 0}[s Y(s)-y(0)] \\
y(\infty) & =\lim _{s \rightarrow 0} s Y(s)
\end{aligned}
$$

- If all poles of $s Y(s)$ are in the left half of the s-plane (or if $Y(s)$ is stable), then

$$
\lim _{t \rightarrow \infty} y(t)=\lim _{s \rightarrow 0} s Y(s)
$$

(Example 3.12) Find the final value $y(\infty)$?

$$
\begin{aligned}
Y(s) & =\frac{3(s+2)}{s\left(s^{2}+2 s+10\right)} \\
y(\infty) & =\lim _{s \rightarrow 0} \frac{3(s+2)}{s^{2}+2 s+10} \\
& =\frac{6}{10} \\
& =0.6
\end{aligned}
$$

(Example 3.13) Find the final value $y(\infty)$?

$$
\begin{aligned}
Y(s) & =\frac{3}{s(s-2)} \\
y(\infty) & \neq \lim _{s \rightarrow 0} \frac{3}{s-2}=-\frac{3}{2}=-1.5
\end{aligned}
$$

because the final value theorem is applied to the stable system, namely, in the case that all poles are located on the left-hand side.
For example,

$$
\begin{aligned}
Y(s) & =\frac{3}{s(s-2)}=\frac{-1.5}{s}+\frac{1.5}{s-2} \\
y(t) & =-1.5+1.5 e^{2 t} \quad \text { for } \quad t \geq 0 \\
y(\infty) & =\infty
\end{aligned}
$$

- DC gain is defined as the final value of the unit-step response for stable systems $(Y(s)=$ $\left.G(s) U(s)=G(s) \frac{1}{s}\right)$

$$
\text { DC gain }=\lim _{s \rightarrow 0} s Y(s)=\lim _{s \rightarrow 0} s\left[G(s) \frac{1}{s}\right]=\lim _{s \rightarrow 0} G(s)
$$

(Example 3.14, DC Gain) Find the DC gain of the following TF

$$
\begin{aligned}
G(s) & =\frac{3(s+2)}{s^{2}+2 s+10} \\
\text { DC gain } & =\lim _{s \rightarrow 0} G(s)=0.6
\end{aligned}
$$

7. Using Laplace Transform (LT) to Solve Differential Equation (DE)
(Example 3.15 Homogeneous DE) Find the solution of DE

$$
\ddot{y}(t)+y(t)=0, \quad \text { where } \quad y(0)=\alpha \quad \dot{y}(0)=\beta
$$

$$
\begin{aligned}
s^{2} Y(s)-y(0) s-\dot{y}(0)+Y(s) & =0 \\
\left(s^{2}+1\right) Y(s) & =\alpha s+\beta \\
Y(s) & =\frac{\alpha s+\beta}{s^{2}+1} \\
Y(s) & =\alpha \frac{s}{s^{2}+1}+\beta \frac{1}{s^{2}+1} \\
y(t) & =\alpha \cos t+\beta \sin t \quad \text { for } t \geq 0
\end{aligned}
$$

(Example 3.16 Forced DE) Find the solution of DE

$$
\begin{aligned}
& \ddot{y}(t)+5 \dot{y}(t)+4 y(t)=3 \cdot 1(t), \quad \text { where } y(0)=\alpha \quad \dot{y}(0)=\beta \\
& {\left[s^{2} Y(s)-y(0) s-\dot{y}(0)\right]+5[s Y(s)-y(0)]+4 Y(s) }=\frac{3}{s} \\
&\left(s^{2}+5 s+4\right) Y(s)=\frac{3}{s}+\alpha s+(\beta+5 \alpha) \\
& Y(s)=\frac{\alpha s^{2}+(\beta+5 \alpha) s+3}{s(s+1)(s+4)} \\
& Y(s)=\frac{C_{1}}{s}+\frac{C_{2}}{s+1}+\frac{C_{3}}{s+4}
\end{aligned}
$$

where

$$
\begin{aligned}
C_{1} & =\frac{3}{4} \\
C_{2} & =\frac{4 \alpha+\beta-3}{3} \\
C_{3} & =\frac{3-4 \alpha-4 \beta}{12}
\end{aligned}
$$

Thus

$$
y(t)=C_{1}+C_{2} e^{-t}+C_{3} e^{-4} \quad \text { for } \quad t \geq 0
$$

(Example 3.17 Forced Solution with Zero Initial Conditions) Find the solution of DE

$$
\begin{aligned}
\ddot{y}(t)+5 \dot{y}(t)+4 y(t)=2 e^{-2 t} \cdot 1(t), & \text { where } y(0)=0 \quad \dot{y}(0)=0 \\
s^{2} Y(s)+5 s Y(s)+4 Y(s) & =\frac{2}{s+2} \\
\left(s^{2}+5 s+4\right) Y(s) & =\frac{2}{s+2} \\
Y(s) & =\frac{2}{(s+1)(s+2)(s+4)} \\
Y(s) & =\frac{C_{1}}{s+1}+\frac{C_{2}}{s+2}+\frac{C_{3}}{s+4}
\end{aligned}
$$

where

$$
\begin{aligned}
C_{1} & =\frac{2}{3} \\
C_{2} & =-1 \\
C_{3} & =\frac{1}{3}
\end{aligned}
$$

Thus

$$
y(t)=\frac{2}{3} e^{-t}-e^{-2 t}+\frac{1}{3} e^{-4 t} \quad \text { for } \quad t \geq 0
$$

8. Poles and Zeros

- Consider a rational TF as two kinds of form

$$
\begin{aligned}
H(s) & =\frac{b_{1} s^{m}+b_{2} s^{m-1}+\cdots+b_{m} s+b_{m+1}}{s^{n}+a_{1} s^{n-1}+\cdots+a_{n-1} s+a_{n}} \\
& =K \frac{\left(s-z_{1}\right)\left(s-z_{2}\right) \cdots\left(s-z_{m}\right)}{\left(s-p_{1}\right)\left(s-p_{2}\right) \cdots\left(s-p_{n}\right)}
\end{aligned}
$$

- If $s=z_{i}$, then

$$
\left.H(s)\right|_{s=z_{i}}=0
$$

The zeros also correspond to the signal transmission blocking properties of the system and are also called the transmission zeros of the system.

- If $s=p_{i}$, then

$$
\left.H(s)\right|_{s=p_{i}}=\infty
$$

The poles of the system determine its stability properties.

- Consider a rational TF as two kinds of form

$$
\begin{aligned}
H(s) & =\frac{b_{1} s^{m}+b_{2} s^{m-1}+\cdots+b_{m} s+b_{m+1}}{s^{n}+a_{1} s^{n-1}+\cdots+a_{n-1} s+a_{n}} \quad \rightarrow \quad \lim _{s \rightarrow \infty} H(s)=\frac{b_{1}}{s^{n-m}} \\
& =K \frac{\left(s-z_{1}\right)\left(s-z_{2}\right) \cdots\left(s-z_{m}\right)}{\left(s-p_{1}\right)\left(s-p_{2}\right) \cdots\left(s-p_{n}\right)}
\end{aligned}
$$

- The system is said to have $n-m$ zeros at infinity if $m<n$ because the TF approaches zero as s approaches infinity. \rightarrow The system is said to be strictly proper
- No physical system can have $n<m$; otherwise it would have an infinite response at $\omega=\infty$. \rightarrow The system is said to be non-proper
- If $z_{i}=p_{j}$, then there are cancellations in the TF. \rightarrow It may lead to undesirable properties.

9. Linear System Analysis using MATLAB (Example 3.18), Matlab of (Example 2.1)
```
num = [0 0 0.001]
den = [1 0.05 0]
[z,p,k] = tf2zp(num,den)
```

(Example 3.21) Matlab of (Example 2.3)

```
s=tf('s')
sysG = 0.0002/s^2
t = 0:0.01:10
ul = [zeros(1,500) 25*ones(1,10) zeros(1,491)]
[y1] = lsim(sysG, ul,t)
y1 = yl*(180/pi)
plot(t,u1)
plot(t,yl)
u2 = [zeros(1,500) 25*ones(1,10) zeros(1,100) -25*ones(1,10) zeros(1,381)]
[y2] = lsim(sysG, u2,t)
y2 = y2*(180/pi)
plot(t,u2)
plot(t,y2)
```


(a)

(b)

Copyright ©2015 Pearson Education, All Rights Reserved

(a)

(b)

Copyright ©(c)2015 Pearson Education, All Rights Reserved

