2. Transfer Function (TF) and Frequency Response

- Definition of Laplace Transform (LT) for any causal LTI system with $t \geq 0$

$$
\mathcal{L}[y(t)]=Y(s)=\int_{0}^{\infty} y(t) e^{-s t} d t
$$

If we apply the LT to convolution integral, we have by using $t-\tau=\eta$:

$$
\begin{aligned}
Y(s) & =\int_{0}^{\infty}\left[\int_{0}^{\infty} u(t-\tau) h(\tau) d \tau\right] e^{-s t} d t \\
& =\int_{0}^{\infty}\left[\int_{0}^{\infty} u(t-\tau) e^{-s t} d t\right] h(\tau) d \tau \\
& =\int_{0}^{\infty}\left[\int_{-\tau}^{\infty} u(\eta) e^{-s(\tau+\eta)} d \eta\right] h(\tau) d \tau \\
& =\int_{0}^{\infty}\left[\int_{0}^{\infty} u(\eta) e^{-s \eta} d \eta\right] h(\tau) e^{-s \tau} d \tau \\
& =\left[\int_{0}^{\infty} h(\tau) e^{-s \tau} d \tau\right]\left[\int_{0}^{\infty} u(\eta) e^{-s \eta} d \eta\right] \\
& =H(s) U(s)
\end{aligned}
$$

where $U(s)$ is the LT of input signal and $H(s)$ is the LT of impulse response,

- Transfer Function (TF) of the system is defined as the LT of impulse response of the system
- TF is the ratio between LT of input and LT of output signals assuming zero initial conditions.

$$
H(s)=\frac{Y(s)}{U(s)}
$$

- It is noted that the convolution integral is replaced by a simple multiplication of the LT.
- Consider LT of the unit impulse function

$$
\mathcal{L}[\delta(t)]=\int_{0}^{\infty} \delta(t) e^{-s t} d t=\int_{0-}^{0+} \delta(t) d t=1
$$

Thus the TF of the system $H(s)$ is equal to the LT of the impulse response $\mathbf{b} / \mathbf{c} U(s)=1$

$$
H(s)=Y(s) \quad \text { when the input has the form of unit impulse }
$$

- LT of the differentiation

$$
\begin{aligned}
\mathcal{L}[\dot{y}(t)] & =\int_{0}^{\infty} \dot{y}(t) e^{-s t} d t=\int_{0}^{\infty} e^{-s t} \dot{y}(t) d t \\
& =\left.e^{-s t} y(t)\right|_{0} ^{\infty}-(-s) \int_{0}^{\infty} e^{-s t} y(t) d t \\
& =0-y(0)+s \int_{0}^{\infty} y(t) e^{-s t} d t \\
& =s Y(s)-y(0)
\end{aligned}
$$

(Example 3.4, TF) Compute the TF of $\dot{y}+k y=u$ with zero initial conditions.

$$
\begin{aligned}
\mathcal{L}[\dot{y}+k y] & =\mathcal{L}[u] \quad \rightarrow \quad \mathcal{L}[\dot{y}]+k \mathcal{L}[y]=\mathcal{L}[u] \quad \rightarrow \quad s Y(s)-y(0)+k Y(s)=U(s) \\
H(s) & =\frac{Y(s)}{U(s)}=\frac{1}{s+k}
\end{aligned}
$$

- (Example 3.5, TF of RC Circuit) Compute the TF of RC circuit

$$
R i(t)+y(t)=u(t) \quad \text { and } \quad i(t)=C \frac{d y(t)}{d t}
$$

Take the LT with zero initial condition

$$
R I(s)+Y(s)=U(s) \quad \text { and } \quad I(s)=C(s Y(s)-y(0))=C s Y(s)
$$

Then we have

$$
R C s Y(s)+Y(s)=U(s) \quad \rightarrow \quad H(s)=\frac{Y(s)}{U(s)}=\frac{1}{R C s+1}
$$

- LT of real exponential function $e^{-a t}$

$$
\begin{aligned}
\mathcal{L}\left[e^{-a t}\right] & =\int_{0}^{\infty} e^{-a t} e^{-s t} d t \\
& =\int_{0}^{\infty} e^{-(s+a) t} d t \\
& =-\left.\frac{1}{s+a} e^{-(s+a) t}\right|_{0} ^{\infty} \\
& =\frac{1}{s+a}
\end{aligned}
$$

- LT of complex exponential function $e^{-j \omega t}$

$$
\begin{aligned}
\mathcal{L}\left[e^{-j \omega t}\right] & =\int_{0}^{\infty} e^{-j \omega t} e^{-s t} d t \\
& =\int_{0}^{\infty} e^{-(j \omega+s) t} d t \\
& =-\left.\frac{1}{s+j \omega} e^{-(s+j \omega) t}\right|_{0} ^{\infty} \\
& =\frac{1}{s+j \omega}
\end{aligned}
$$

- Euler theorem ($e^{j \theta}=\cos \theta+j \sin \theta$) and sinusoidal (cosine and sine) functions

$$
\begin{aligned}
e^{j \omega t} & =\cos \omega t+j \sin \omega t \\
e^{-j \omega t} & =\cos \omega t-j \sin \omega t
\end{aligned}
$$

By summing the above and dividing by half, we have the definition of cosine function

$$
\cos \omega t=\frac{e^{j \omega t}+e^{-j \omega t}}{2}
$$

By subtracting the above and dividing by $2 j$, we have the definition of sine function

$$
\sin \omega t=\frac{e^{j \omega t}-e^{-j \omega t}}{2 j}
$$

- LT of the sinusoidal functions

$$
\begin{aligned}
\mathcal{L}[\cos \omega t] & =\frac{1}{2}\left\{\frac{1}{s-j \omega}+\frac{1}{s+j \omega}\right\} \\
& =\frac{1}{2} \frac{2 s}{s^{2}+\omega^{2}} \\
& =\frac{s}{s^{2}+\omega^{2}} \\
\mathcal{L}[\sin \omega t] & =\frac{1}{2 j}\left\{\frac{1}{s-j \omega}-\frac{1}{s+j \omega}\right\} \\
& =\frac{1}{2 j} \frac{2 j \omega}{s^{2}+\omega^{2}} \\
& =\frac{\omega}{s^{2}+\omega^{2}}
\end{aligned}
$$

(Example 3.6, 3.7, Complete response (=transient + steady state response)) Obtain the output of the system $H(s)=\frac{1}{s+1}$ when the input $u(t)=\sin 10 t$ for $t \geq 0$ is applied?

$$
U(s)=\mathcal{L}[\sin 10 t]=\frac{10}{s^{2}+100}
$$

The output response is

$$
\begin{aligned}
Y(s)=H(s) U(s) & =\frac{1}{s+1} \frac{10}{s^{2}+100} \\
& =\frac{a}{s+1}+\frac{b s+c}{s^{2}+100} \quad \text { with three unknowns } a, b, c \\
& =\frac{10}{101}\left\{\frac{1}{s+1}+\frac{-s+1}{s^{2}+100}\right\} \\
& =\frac{10}{101}\left\{\frac{1}{s+1}-\frac{s}{s^{2}+100}+\frac{1}{s^{2}+100}\right\} \\
& =\frac{10}{101} \frac{1}{s+1}-\frac{10}{101} \frac{s}{s^{2}+100}+\frac{1}{101} \frac{10}{s^{2}+100}
\end{aligned}
$$

Take the inverse LT

$$
y(t)=\frac{10}{101} e^{-t}-\frac{10}{101} \cos 10 t+\frac{1}{101} \sin 10 t \quad \text { for } t \geq 0
$$

- Frequency response (main topic of chapter 6) is defined as the steady-state response when the sinusoidal input is applied. In other words, the transient responses are ignored.
- From previous example, the frequency response can be obtained by ignoring the transient response as follow:

$$
\begin{aligned}
y_{s s}(t) & =\frac{1}{101} \sin 10 t-\frac{10}{101} \cos 10 t \\
& =\frac{1}{\sqrt{101}} \sin \left(10 t-\tan ^{-1} 10\right) \\
& =\frac{1}{\sqrt{101}} \sin \left(10 t-84.3^{\circ}\right) \quad \text { for } t \geq 0
\end{aligned}
$$

where $A \sin \omega t+B \cos \omega t=\sqrt{A^{2}+B^{2}} \sin (\omega t+\phi)$ and $\phi=\tan ^{-1} \frac{B}{A}$.

- Indeed, steady-state response due to the sinusoidal input $u(t)=A \sin \omega t$ is obtained as

$$
y_{s s}(t)=A|H(j \omega)| \sin (\omega t+\angle H(j \omega))
$$

This means that if a system represented by the $\mathrm{TF} H(s)$ has a sinusoidal input with magnitude A, the output will be sinusoidal at the same frequency with magnitude $A|H(j \omega)|$ and will be shifted in phase by the angle $\angle H(j \omega)$, where $|H(j \omega)|$ is call as magnitude ratio and $\angle H(j \omega)$ as phase difference.

- For example, if $H(s)=\frac{1}{s+1}$ and $u(t)=\sin 10 t$, then the magnitude ratio and the phase difference at a specific frequency $\omega=10[\mathrm{rad} / \mathrm{s}]$ are

$$
\begin{aligned}
& |H(j \omega)|=\left|\frac{1}{j \omega+1}\right|=\frac{1}{\sqrt{\omega^{2}+1}}=\frac{1}{\sqrt{101}} \\
& \angle H(j \omega)=\angle \frac{1}{j \omega+1}=-\tan ^{-1} \omega=-\tan ^{-1} 10=-84.3^{\circ}
\end{aligned}
$$

we have the frequency response as follow:

$$
u(t)=\sin 10 t \quad \rightarrow \quad y_{s s}(t)=\frac{1}{\sqrt{101}} \sin \left(10 t-84.3^{\circ}\right)
$$

along with

$$
u(t)=A \sin \omega t \quad \rightarrow \quad y_{s s}(t)=A|H(j \omega)| \sin (\omega t+\angle H(j \omega))
$$

3. The \mathcal{L}_{-}Laplace Transform (LT)

- One-sided (or unilateral) LT with the complex variable $s=\sigma+j \omega$

$$
F(s)=\int_{0-}^{\infty} f(t) e^{-s t} d t
$$

where it is noted that \mathcal{L}_{+}Laplace Transform (LT) is defined

$$
F(s)=\int_{0+}^{\infty} f(t) e^{-s t} d t=\int_{0-}^{\infty} f(t) e^{-s t} d t-\int_{0-}^{0+} f(t) e^{-s t} d t=\int_{0-}^{\infty} f(t) e^{-s t} d t-\int_{0-}^{0+} f(t) d t
$$

- Two-sided LT

$$
F(s)=\int_{-\infty}^{\infty} f(t) e^{-s t} d t
$$

- Inverse LT

$$
f(t)=\frac{1}{2 \pi j} \int_{\sigma_{c}-j \infty}^{\sigma_{c}+j \infty} F(s) e^{s t} d s
$$

where σ_{c} is a selected value to the right of all the singularities of $F(s)$ in the s-plane.
(Example 3.8, Step and Ramp) Find the LT of the step $a \cdot 1(t)$ and ramp $b t \cdot 1(t)$

$$
\begin{aligned}
F_{1}(s) & =\int_{0}^{\infty} a e^{-s t} d t \\
& =-\left.\frac{a e^{-s t}}{s}\right|_{0} ^{\infty} \\
& =0-\frac{-a}{s} \\
& =\frac{a}{s} \\
F_{2}(s) & =\int_{0}^{\infty} b t e^{-s t} d t \\
& =-\left.\frac{b t e^{-s t}}{s}\right|_{0} ^{\infty}-\int_{0}^{\infty}-\frac{b e^{-s t}}{s} d t \\
& =-\left.\frac{b t e^{-s t}}{s}\right|_{0} ^{\infty}+-\left.\frac{b e^{-s t}}{s^{2}}\right|_{0} ^{\infty} \\
& =\frac{b}{s^{2}}
\end{aligned}
$$

- see Table A. 2 in Appendix A (page 867)

