(Revisited Example 2.8)

For the pendulum,

$$
\begin{aligned}
N & =m_{p} \ddot{x}+m_{p} l \ddot{\theta} \cos \theta-m_{p} \dot{\theta}^{2} \sin \theta \\
P-m_{p} g & =m_{p} l \ddot{\theta} \sin \theta+m_{p} l \dot{\theta}^{2} \cos \theta \\
-P l \sin \theta-N l \cos \theta & =I \ddot{\theta} \quad \rightarrow \quad\left(I+m_{p} l^{2}\right) \ddot{\theta}+m_{p} g l \sin \theta=-m_{p} \ddot{x} l \cos \theta
\end{aligned}
$$

For the crane,

$$
m_{t} \ddot{x}=u-N-b \dot{x} \quad \rightarrow \quad\left(m_{t}+m_{p}\right) \ddot{x}+b \dot{x}+m_{p} \ddot{\theta} \cos \theta-m_{p} l \dot{\theta}^{2} \sin \theta=u
$$

As a result, we have the complete equation of motion:

$$
\begin{aligned}
\left(I+m_{p} l^{2}\right) \ddot{\theta}+m_{p} g l \sin \theta+m_{p} \ddot{x} l \cos \theta & =0 \\
\left(m_{t}+m_{p}\right) \ddot{x}+b \dot{x}+m_{p} l \ddot{\theta} \cos \theta-m_{p} l \dot{\theta}^{2} \sin \theta & =u
\end{aligned}
$$

For the linearization with small angle variation, $\sin \theta \approx \theta, \cos \theta \approx 1$ and $\dot{\theta}^{2} \approx 0$, we have

$$
\begin{aligned}
\left(I+m_{p} l^{2}\right) \ddot{\theta}+m_{p} g l \theta+m_{p} l \ddot{x} & =0 \\
\quad\left(m_{t}+m_{p}\right) \ddot{x}+b \dot{x}+m_{p} l \ddot{\theta} & =u
\end{aligned}
$$

Furthermore, ignoring the damping b, we can get the TF as follow:

$$
\begin{array}{r}
\left(I+m_{p} l^{2}\right) s^{2} \Theta(s)+m_{p} g l \Theta(s)+m_{p} l s^{2} X(s)=0 \\
\left(m_{t}+m_{p}\right) s^{2} X(s)+m_{p} l s^{2} \Theta(s)=u
\end{array}
$$

Thus, we have

$$
\therefore \quad \frac{\Theta(s)}{U(s)}=\frac{-m_{p} l}{\left[\left(m_{t}+m_{p}\right)\left(I+m_{p} l^{2}\right)-m_{p}^{2} l^{2}\right] s^{2}+\left(m_{t}+m_{p}\right) m_{p} g l}
$$

3 Models of Electromechanical Systems

1. Law of Motor

- If a current $i[\mathrm{~A}]$ in a conductor of length $l[\mathrm{~m}]$ is arranged at right angles in a magnetic field of B [Tesla], then there is a force on the conductor at right angles to the plane of i and B with magnitude

$$
F=\operatorname{Bil}[N]
$$

- It is called "law of motors" regarding the conversion of electric energy into mechanical work.

2. Law of Generator

- If a conductor of length $l[\mathrm{~m}]$ is moving in a magnetic field $B[\mathrm{~T}]$ at a velocity of $v[\mathrm{~m} / \mathrm{s}]$ at mutually right angles, the electric voltage is established across the conductor with magnitude

$$
e=B l v[V]
$$

- It is called "law of generators"

3. Loudspeakers
(Example 2.13, Loudspeaker) A typical geometry for a loudspeaker for producing sound is sketched. The permanent magnet estabilshes a raidal field in the cylindrical gap b / w the poles of the magnet. The force on the conductor wound on the bobbin causes the voice coil to move, producing sound. The cone has mass M and viscous friction b. Assume the magnet establishes a uniform field B of $0.4[\mathrm{~T}]$ and the bobbin has 18 turns at a $1.9-\mathrm{cm}$ diameter.

- The conductor length is

$$
l=(2 \cdot \pi \cdot 0.0095) \cdot 18=1.074[m]
$$

- The force is

$$
F=B i l=0.4 \cdot i \cdot 1.074=0.43 i[N]
$$

- Mechanical system is modeled as

$$
M \ddot{x}=F-b \dot{x} \quad \rightarrow \quad M \ddot{x}+b \dot{x}=0.43 i
$$

- The TF of mechanical part is

$$
\therefore \quad \frac{X(s)}{I(s)}=\frac{0.43}{s(M s+b)}
$$

(Example 2.14, Loudspeaker with Circuit) Consider the driving circuit for the louspeaker. Find the differential equation relating the input voltage v_{a} and the output cone displacement x. Assume the effective resistance R and inductance L.

- The resulting voltage according to the speaker motion is

$$
e_{\text {coil }}=B l \dot{x}=0.4 \cdot 1.047 \cdot \dot{x}=0.43 \dot{x}
$$

- Due to the induced voltage effect, the electric circuit is modeled as

$$
\begin{aligned}
L \frac{d i}{d t}+R i+0.43 \dot{x} & =v_{a} \\
(L s+R) I(s)+0.43 s X(s) & =V_{a}(s) \\
(L s+R)\left(\frac{s(M s+b)}{0.43}\right) X(s)+0.43 s X(s) & =V_{a}(s)
\end{aligned}
$$

- The TF of dynamic model for the loudspeaker is

$$
\therefore \quad \frac{X(s)}{V_{a}(s)}=\frac{0.43}{s\left[(M s+b)(L s+R)+0.43^{2}\right]}
$$

4. Motors

- Consider DC motor. The motor equations give the torque T on the rotor in terms of armature current i_{a} and express the back emf voltage in terms of shaft's rotational velocity $\dot{\theta}_{m}$.

$$
\begin{aligned}
T(t) & =r \times\left(B \cdot i_{a}(t) \cdot l\right)=(r B l) \cdot i_{a}(t)=K_{t} \cdot i_{a}(t) \\
e(t) & =B \cdot l \cdot\left(r \times \dot{\theta}_{m}(t)\right)=(r B l) \cdot \dot{\theta}_{m}(t)=K_{e} \cdot \dot{\theta}_{m}(t)
\end{aligned}
$$

where r implies an effective moment arm of motor, K_{t} and K_{e} denote the motor torque constant and the motor back emf constant. Note that $K_{t}=K_{e}$ with different dimensions.

(Example 2.15, Modeling a DC Motor) Assume the rotor has inertia J_{m} and viscous friction coefficient b.

$$
\begin{aligned}
J_{m} \ddot{\theta}_{m}+b \dot{\theta}_{m} & =K_{t} i_{a} \\
L_{a} \frac{d i_{a}}{d t}+R_{a} i_{a}+K_{e} \dot{\theta}_{m} & =v_{a}
\end{aligned}
$$

- Take LT with zero initial conditions, then we have

$$
\begin{aligned}
\left(J_{m} s^{2}+b s\right) \Theta_{m}(s) & =K_{t} I_{a}(s) \\
\left(L_{a} s+R_{a}\right) I_{a}+K_{e} s \Theta_{m}(s) & =V_{a}(s)
\end{aligned}
$$

- Also, we can get the TF as follow:

$$
\therefore \quad \frac{\Theta_{m}(s)}{V_{a}(s)}=\frac{K_{t}}{s\left[\left(J_{m} s+b\right)\left(L_{a} s+R_{a}\right)+K_{t} K_{e}\right]}
$$

- Ignoring the inductance due to small quantity, we can simplify above complete model into

$$
\begin{aligned}
\therefore \quad \frac{\Theta_{m}(s)}{V_{a}(s)} & \approx \frac{K_{t}}{s\left[J_{m} R_{a} s+\left(b R_{a}+K_{t} K_{e}\right)\right]} \\
& \approx \frac{K}{s(\tau s+1)}
\end{aligned}
$$

where

$$
K=\frac{K_{t}}{b R_{a}+K_{t} K_{e}} \quad \tau=\frac{J_{m} R_{a}}{b R_{a}+K_{t} K_{e}}
$$

- If we consider the output speed, $\omega_{m}(t)=\dot{\theta}_{m}(t)$, then

$$
\therefore \quad \frac{\Omega_{m}(s)}{V_{a}(s)} \approx \frac{K}{\tau s+1}
$$

- Other types of motors: AC motor, brushless DC motor, stepping motor and so on.

5. Gears

- Consider gear transmission. Since the transmitted force and velocity at the contact point are the same, we have

$$
\begin{array}{rlrl}
\frac{T_{1}}{r_{1}}=\frac{T_{2}}{r_{2}}=f: & & \text { force applied by teeth at the contact point } \\
\omega_{1} r_{1} & =\omega_{2} r_{2} & =v: & \\
\frac{2 \pi r_{1}}{N_{1}}=\frac{2 \pi r_{2}}{N_{2}}=m: & \text { velocity at the contact point } \\
\text { module for the transmission }
\end{array}
$$

- Let us define the gear ratio $n=\frac{N_{2}}{N_{1}}$, then we have

$$
n=\frac{N_{2}}{N_{1}}=\frac{r_{2}}{r_{1}}=\frac{\omega_{1}}{\omega_{2}}=\frac{T_{2}}{T_{1}}
$$

- The equations of motion for bodies 1 and 2 are

$$
\begin{aligned}
J_{1} \ddot{\theta}_{1}+b_{1} \dot{\theta}_{1}=T_{m}-T_{1} & \rightarrow & n J_{1} \ddot{\theta}_{2}+n b_{1} \dot{\theta}_{2} & =T_{m}-\frac{T_{2}}{n} \\
J_{2} \ddot{\theta}_{2}+b_{2} \dot{\theta}_{2}=T_{2} & \rightarrow & J_{2} \ddot{\theta}_{2}+b_{2} \dot{\theta}_{2} & =n T_{m}-n^{2} J_{1} \ddot{\theta}_{2}-n^{2} b_{1} \dot{\theta}_{2} \\
& & \left(J_{2}+n^{2} J_{1}\right) \ddot{\theta}_{2}+\left(b_{2}+n^{2} b_{1}\right) \dot{\theta}_{2} & =n T_{m}
\end{aligned}
$$

where T_{m} is a servo motor torque, T_{1} is the reaction torque from gear 2 acting back on gear 1 , and T_{2} is the torque applied on gear 2 by gear 1 .

- Take LT with zero initial conditions

$$
\frac{\Theta_{2}(s)}{T_{m}(s)}=\frac{n}{J_{e q} s^{2}+b_{e q} s}
$$

where

$$
J_{e q}=J_{2}+n^{2} J_{1} \quad b_{e q}=b_{2}+n^{2} b_{1}
$$

are referred to as the equivalent inertias and damping coefficients.

