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Dynamic Models

1 Dynamics of Mechanical Systems
1. Translational Motion

• Newton’s 2nd law ∑
F = m · a

vector sum of all forces applied to each body = mass of the body · vector acceleration of each body

• A force of 1N will impart an acceleration of 1m/s2 to a mass of 1kg.
• The weight of an object is mg, where g is the acceleration of gravity (= 9.81m/s2), which is

the quantity measured on scales.
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• (Example 2.1, Cruise Control Model) Input jumps from being u = 0 at time t = 0 to a constant
u = 500N , hereafter, assume that m = 1000kg, viscous drag coefficient b = 50Ns/m, and initial
speed v(0) = 0. From the free-body diagram,

u− bv = mv̇

In order to solve above equation, let us take Laplace transform (LT) explained in the next
chapter like these: L[u(t)] = U(s), L[v(t)] = V (s) and L[v̇(t)] = sV (s)− v(0)

U(s)− bV (s) = m[sV (s)− v(0)] → V (s)

U(s)
=

1

ms+ b
=

1

1000s+ 50
=

0.001

s+ 0.05

Also, since the LT of unit-step function is 1
s , we can get

V (s) =
0.001

s+ 0.05
· 500
s

=
10

s
− 10

s+ 0.05

Now let us take inverse Laplace transform (iLT) to get the time-domain profile of speed by
using L−1[1s ] = 1 and L−1[ 1

s+a ] = e−at for t ≥ 0 as follow:

∴ v(t) = 10− 10e−0.05t for t ≥ 0
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• (Example 2.2, Two-Mass System, Suspension Model on Bumpy Road) Input is the bumpy
road r(t) and output is the position of upper mass (seat) y.

m1ẍ = −ks(x− y)− b(ẋ− ẏ)− kw(x− r) m2ÿ = −ks(y − x)− b(ẏ − ẋ)

Let us take LT with zero initial conditions, then we have

(m1s
2 + bs+ (ks + kw))X(s) = (bs+ ks)Y (s) + kwR(s) (m2s

2 + bs+ ks)Y (s) = (bs+ ks)X(s)

After tedious manipulation, we can get the relation of Y (s)
R(s)
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2. Rotational Motion

• Euler’s law ∑
M = I · α

sum of all moments = body’s mass moment of inertia · angular acceleration
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• (Example 2.3, Satellite Attitude Control Model) Reaction jets produce a moment of Fcd about
the mass center and there is small disturbance moment MD on the satellite caused from the
solar pressure acting on any asymmetric solar panels. From the free-body diagram,

Fcd+MD = Iθ̈

with zero initial conditions of θ(0) = 0 and θ̇(0) = 0, then we have a Transfer Function (TF)
as follow:

Θ(s)

U(s)
=

1

Is2

where U(s) = L(Fcd+MD) and above system is referred to as “double integrator plant”.

23



• (Example 2.4, Flexible Satellite Attitude Control) Particular difficulty arises when there is
flexibility b/w the sensor and actuator locations. Let us denote the applied input torque as
Tc =Mc and the disturbance torque as MD = 0. From the free-body diagram,

I1θ̇1 = Tc − b(θ̇1 − θ̇2)− k(θ1 − θ2)

I2θ̇2 = −b(θ̇2 − θ̇1)− k(θ2 − θ1)

For simplicity, ignoring the damping b,

(I1s
2 + k)Θ1(s) = Tc(s) + kΘ2(s)

(I2s
2 + k)Θ2(s) = kΘ1(s)

we have LT under zero initial conditions as follows:

Θ1(s)

Tc(s)
=

I2s
2 + k

(I1s2 + k)(I2s2 + k)− k2
collocated case

Θ2(s)

Tc(s)
=

k

(I1s2 + k)(I2s2 + k)− k2
non-collocated case
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• (Example 2.5, Quadrotor Drone) The body-fixed coordinate frame B has its z-axis downward
following the aerospace convention. The quadrotor has four rotors, labeled 1 to 4, mounted
at the end of each cross arm.

– The rotor speed is ωi and the thrust is an upward vector

Ti = bω2
i for i = 1, 2, 3, 4

in the drone’s negative z-direction, where b is a lift constant. T =
∑
Ti is the total upward

thrust.
– Pairwise differences in rotor thrusts cause the drone to rotate. Rolling torque about x-

axis and pitching torque about y-axis are

τx = d(T4 − T2) = db(ω2
4 − ω2

2) and τy = d(T1 − T3) = db(ω2
1 − ω2

3))

where d is the distance from the motor to the mass center.
– The torque applied to each propeller by the motor is a reaction torque on the airframe

which acts to rotate the airframe about the propeller shaft in the opposite direction to
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its rotation.

Qi = kω2
i

where k depends on the same factors as b.
– The total reaction torque about the z-axis is

τz = Q1 −Q2 +Q3 −Q4 = k(ω2
1 − ω2

2 + ω2
3 − ω2

4)

where the different signs are due to the different rotation directions of the rotors.
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• (Example 2.6, 2.7, Pendulum) Assume that the moment of inertia about the pivot point is
I = ml2.

Iθ̈ = Tc −mgl sin θ → ml2θ̈ +mgl sin θ = Tc → θ̈ +
g

l
sin θ =

1

ml2
Tc

This equation is “nonlinear” due to sin θ term.
(1) For small angle variation, since sin θ ≈ θ, we have linear equation:

θ̈ +
g

l
θ =

1

ml2
Tc → Θ(s)

Tc(s)
=

1
ml2

s2 + ω2
n

where ωn =
√

g
l implies the natural frequency of harmonic oscillator.

(2) For general case, we should use MATLAB direct coding or SIMULINK block diagram to
simulate nonlinear equation. → When Tc = 1[N/m] and Tc = 4[N/m] are applied to the given
system, respectively, we can see an increased amplitude and slower frequency becasuse sin θ
compared to θ signifies a reduced gravational restoring force at the higher angles.
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