- (Question) fig 4.27(b)에서 전달함수 $\frac{Y}{W}$ 식을 구하는 과정 ?

제 5 장

The Root-Locus Design Method

1 Root Locus of a Basic Feedback System

- The characteristic equation can be rearranged with the parameter of interest K :

$$
1+D_{c}(s) G(s) H(s)=0 \rightarrow a(s)+K b(s)=0 \quad \rightarrow \quad 1+K L(s)=0 \quad \text { with } L(s)=\frac{b(s)}{a(s)} \rightarrow L(s)=-\frac{1}{K}
$$

where it is noted that K can be the gain of the controller.

- The locus of all possible roots of the characteristic equation is plotted as K varies from zero to infinity, and then we can use the resulting plot to aid us in selecting the best value of K in viewpoints of stability and performance.
- The solutions of above equations are the roots (poles) of the closed-loop system.
- Let us factor the monic polynomials $a(s)$ and $b(s)$ as

$$
\begin{aligned}
& a(s)=s^{n}+a_{1} s^{n-1}+\cdots+a_{n}=\left(s-p_{1}\right)\left(s-p_{2}\right) \cdots\left(s-p_{n}\right) \\
& b(s)=s^{m}+b_{1} s^{m-1}+\cdots+b_{m}=\left(s-z_{1}\right)\left(s-z_{2}\right) \cdots\left(s-z_{m}\right)
\end{aligned}
$$

where p_{i} and z_{i} are pole and zero of $L(s)$, not the pole and zero of the closed-loop system. The roots of the characteristic equation itself are r_{i} from the factored form ($n>m$)

$$
a(s)+K b(s)=\left(s-r_{1}\right)\left(s-r_{2}\right) \cdots\left(s-r_{n}\right)
$$

where r_{i} is pole of the closed-loop system.

- (Example 5.1) In Fig. 5.1, assume that $G(s)=\frac{A}{s(s+1)}$ and $D_{c}(s)=H(s)=1$. Root Locus wrt. A ?

1. $L(s)=\frac{1}{s(s+1)}$ and $K=A$
2. $a(s)=s^{2}+s$ with $p_{1}=-1, p_{2}=0$ and $b(s)=1$ with no zero
3. characteristic equation and closed-loop poles:

$$
a(s)+K b(s)=s^{2}+s+K=0 \quad r_{1,2}=\frac{-1 \pm \sqrt{1-4 K}}{2}
$$

- at $K=0$, the roots are $s=-1$ and $s=0$.
- for $0<K<\frac{1}{4}$, the roots are real between -1 and 0
- at $K=\frac{1}{4}$, two repeated roots at $s=-\frac{1}{2}$ (breakaway point)
- for $K>\frac{1}{4}$, the roots become complex with real parts at $-\frac{1}{2}$ and imaginary parts that increase essentially in proportion to the square root of K.

4. The dashed lines in Fig. 5.2 correspond to roots with a damping ratio $\zeta=0.5\left(\theta=\sin ^{-1} \zeta=\right.$ 30°). The crossing points denoted by dots can be calculated as follows:

$$
r_{1,2}=-\frac{1}{2} \pm \frac{\sqrt{4 K-1}}{2} j=-\frac{1}{2} \pm \frac{\sqrt{3}}{2} j \quad \rightarrow \quad \therefore \quad K=1
$$

- solve (Example 5.2)
- (Example) In the Fig. 5.1, assume that $G(s)=\frac{1}{s(s+c)}$ and $D_{c}(s)=H(s)=1$. Root Locus wrt c ?

1. The closed-loop characteristic equation:

$$
1+G(s)=1+\frac{1}{s^{2}+c s}=0 \quad \rightarrow \quad 1+c \frac{s}{s^{2}+1}=0
$$

2. $L(s)=\frac{s}{s^{2}+1}$ and $K=c$
3. $a(s)=s^{2}+1$ with $p_{1,2}= \pm j$ and $b(s)=s$ with $z_{1}=0$
4. characteristic equation and closed-loop poles:

$$
a(s)+K b(s)=s^{2}+K s+1=0 \quad r_{1,2}=\frac{-K \pm \sqrt{K^{2}-4}}{2}
$$

- at $K=0$, the roots are $s=j$ and $s=-j$
- for $0<K<2$, the roots are complex at $s=-\frac{K}{2} \pm \frac{\sqrt{4-K^{2}}}{2} j$.
- at $K=2$, two repeated roots at $s=-1$ (break-in point)
- for $K>2$, the roots become real values on the negative real axis at $s=-\frac{K}{2} \pm \frac{\sqrt{K^{2}-4}}{2}$
- as $K \rightarrow \infty$, the real roots approach at $s=0$ and $s=-\infty$.

5. For the understanding of locus of the complex roots, let us apply $s=\sigma+j \omega$ for $0<K<2$:

$$
s^{2}+K s+1=\sigma^{2}-\omega^{2}+2 j \sigma \omega+K(\sigma+j \omega)+1=0 \quad \rightarrow \quad \sigma^{2}-\omega^{2}+K \sigma+1=0 \quad \text { and } \quad 2 \sigma \omega+K \omega=0
$$

From above relation, we can know $K=-2 \sigma$ and we can derive the following:

$$
\sigma^{2}-\omega^{2}+K \sigma+1=\sigma^{2}-\omega^{2}-2 \sigma^{2}+1=0 \quad \rightarrow \quad \sigma^{2}+\omega^{2}=1 \quad \text { for } \quad-1<\sigma<0
$$

thus we can know that the semi-circle is plotted for $0<K<2$ as shown in the figure.

- Matlab command : rlocus(sys)

2 Guidelines for Determining a Root Locus

- (Definition I) The root locus is the set of values of s for which $1+K L(s)=0$ is satisfied as the real parameter K varies from 0 to $+\infty$. Typically, $1+K L(s)=0$ is the characteristic equation of the system, and in this case, the roots on the locus are the closed-loop poles of that system.
- (Definition II, Phase Condition) The root locus of $L(s)$ is the set of points in the s-plane where the phase of $L(s)$ is 180°. To test whether a point in the s-plane is on the locus, we define the angle to the test point from a zero as ψ_{i} and the angle to the test point from a pole as ϕ_{i} then the Definition II is expressed as those points in the s-plane where, for an integer l,

$$
\angle L\left(s_{0}\right)=\sum \psi_{i}-\sum \phi_{i}=180^{\circ}+360(l-1)
$$

\sum angle to the test point from a zero $-\sum$ angle to the test point from a pole $= \pm 180^{\circ}, \pm 540^{\circ}, \ldots$

- Consider the example,

$$
L(s)=\frac{s+1}{s(s+5)\left[(s+2)^{2}+4\right]}
$$

In the figure, the poles are marked \times and the zero is marked \bigcirc. Suppose we select the test point $s_{0}=-1+2 j$. Let us test whether or not s_{0} (test point) lies on the root locus for some value of K.

$$
\begin{aligned}
& \psi_{1}=\angle\left(s_{0}-(-1)\right)=\angle((-1+2 j)-(-1))=\angle 2 j=90^{\circ} \\
& \phi_{1}=\angle\left(s_{0}-(0)\right)=\angle(-1+2 j)=180^{\circ}-\tan ^{-1} 2=116.6^{\circ} \\
& \phi_{2}=\angle\left(s_{0}-(-2+2 j)\right)=\angle((-1+2 j)-(-2+2 j))=\angle 1=0^{\circ} \\
& \phi_{3}=\angle\left(s_{0}-(-2-2 j)\right)=\angle((-1+2 j)-(-2-2 j))=\angle(1+4 j)=\tan ^{-1} 4=76^{\circ} \\
& \phi_{4}=\angle\left(s_{0}-(-5)\right)=\angle(4+2 j)=\tan ^{-1} \frac{1}{2}=26.6^{\circ} \\
& \angle L=\psi_{1}-\left(\phi_{1}+\phi_{2}+\phi_{3}+\phi_{4}\right)=-129.2^{\circ} \neq-180^{\circ}
\end{aligned}
$$

as a result
Since the phase of $L\left(s_{0}\right)$ is not $\pm 180^{\circ}$, we conclude that s_{0} is not on the root locus.

1. Rules for Determining a Positive Root Locus
a) (Rule 1, Start and End) The n branches of the locus start at the poles of $L(s)$ and m of these branches end on the zeros of $L(s)$.

$$
\begin{array}{rlrl}
a(s)+K b(s) & =0 & & \\
\text { when } K=0, & a(s) & =0 & \\
\text { poles of } L(s) \text { are roots } \\
\text { when } K=\infty, & b(s) & =0 & \\
\text { zeros (including infinity zeros) of } L(s) \text { are roots }
\end{array}
$$

b) (Rule 2, Real Axis) The loci are on the real axis to the left of an odd number of poles and zeros.
c) (Rule 3, Asymptotes) For large s and $K, n-m$ branches of the loci are asymptotic to lines at angles ϕ_{l} radiating out from the point $s=\alpha$ on the real axis, where

$$
\begin{aligned}
\phi_{l} & =\frac{180^{\circ}+360(l-1)}{n-m} \quad \text { for } \quad l=0, \pm 1, \pm 2, \cdots \\
\alpha & =\frac{\sum p_{i}-\sum z_{i}}{n-m}
\end{aligned}
$$

d) (Rule 4, Departure Angles and Arrival Angles) The angle of departure of a branch of the locus from a pole is given by, with the multiplicity q of the repeated poles,
$q \phi_{l, d e p}=\sum \psi_{i}-\sum_{i \neq l, d e p} \phi_{i}-180^{\circ}-360^{\circ}(l-1)$
$=$ sum of the angles to all zeros - sum of the angles to the remaining poles $-180^{\circ}-360^{\circ}(l-1)$
where l is an integer and takes on the values $1,2, \ldots, q$.
Likewise, the angles of arrival of a branch at a zero with multiplicity q is given by
$q \psi_{l, a r r}=\sum \phi_{i}-\sum_{i \neq l, a r r} \psi_{i}+180^{\circ}+360^{\circ}(l-1)$
$=$ sum of the angles to all poles - sum of the angles to the remaining zeros $+180^{\circ}+360^{\circ}(l-1)$
e) (Rule 5, Break-in and Breakaway Points) The break-in and breakaway points are obtained by solving

$$
\frac{d K}{d s}=0 \quad \leftarrow \quad K=-\frac{1}{L(s)}=-\frac{b(s)}{a(s)}
$$

f) Consider the following example:

$$
L(s)=\frac{1}{s\left[(s+4)^{2}+16\right]}
$$

i. (Rule 1, Start and End)

$$
\begin{aligned}
\text { when } K=0, & s=0,-4+4 j,-4-4 j \quad \text { poles of } L(s) \\
\text { when } K=\infty, & s=\infty, \infty, \infty \quad \text { zeros of } L(s)
\end{aligned}
$$

ii. (Rule 2, Real Axis) Negative real axis is locus
iii. (Rule 3, Asymptotes) point at α with angles of ϕ_{l} (Fig. 5.6)

$$
\begin{aligned}
\phi_{l} & =\frac{180^{\circ}+360(l-1)}{3}= \pm 60^{\circ}, 180^{\circ} \\
\alpha & =\frac{0-4+4 j-4-4 j}{3}=-\frac{8}{3}
\end{aligned}
$$

iv. (Rule 4, Departure Angles and Arrival Angles) (Fig. 5.7)

$$
\begin{aligned}
& \phi_{\text {dep },-4+4 j}=0-(\angle(-4+4 j-0)+\angle(-4+4 j+4+4 j))-180^{\circ}=0-135^{\circ}-90^{\circ}-180^{\circ}=-45^{\circ} \\
& \phi_{\text {dep },-4-4 j}=0-(\angle(-4-4 j-0)+\angle(-4-4 j+4-4 j))-180^{\circ}=0+135^{\circ}+90^{\circ}-180^{\circ}=45^{\circ}
\end{aligned}
$$

v. (Rule 5, Break-in and Breakaway Points) No break-away and break-in points.
vi. As a result, the root-locus of the system is given by implementing the following code

```
s = tf('s');
sysL = 1/(s*((s+4)^2+16));
rlocus(sysL)
[K,p] = rlocfind(sysL)
```

2. Selecting the Parameter Value

- Using Definition II of the locus, we have developed rules to sketch a root locus from the phase of $L(s)$ alone. If the equation is actually to have a root at a particular place when the phase of $L(s)$ is 180°, then a magnitude condition must also be satisfied.
- The magnitude condition is written as

$$
K=\frac{1}{|L(s)|} \quad \leftarrow \quad K=-\frac{1}{L(s)}
$$

- For given the following example, let us calculate the the gain K when $\zeta=0.5$.

$$
L(s)=\frac{1}{s\left[(s+4)^{2}+16\right]}
$$

Let us assume that the crossing point $s_{0}=-2+2 \sqrt{3} j$ between $\zeta=0.5$ line and the root locus is found as shown in Fig. 5.9. Then,

$$
K=\frac{1}{\left|L\left(s_{0}\right)\right|}=\left|s_{0}\right| \cdot\left|s_{0}-(-4+4 j)\right| \cdot\left|s_{0}-(-4-4 j)\right|=4 \cdot 2.1 \cdot 7.7=65
$$

