
• (Question) fig 4.27(b)–⌧ ⌅Ïh⇠ Y

W
›D lXî ¸� ?
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⌧5•

The Root-Locus Design Method

1 Root Locus of a Basic Feedback System

• The characteristic equation can be rearranged with the parameter of interest K:

1 +Dc(s)G(s)H(s) = 0 ! a(s) +Kb(s) = 0 ! 1 +KL(s) = 0 with L(s) =
b(s)

a(s)
! L(s) = � 1

K

where it is noted that K can be the gain of the controller.

– The locus of all possible roots of the characteristic equation is plotted as K varies from zero
to infinity, and then we can use the resulting plot to aid us in selecting the best value of K

in viewpoints of stability and performance.
– The solutions of above equations are the roots (poles) of the closed-loop system.
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• Let us factor the monic polynomials a(s) and b(s) as

a(s) = s
n + a1s

n�1 + · · ·+ an = (s� p1)(s� p2) · · · (s� pn)

b(s) = s
m + b1s

m�1 + · · ·+ bm = (s� z1)(s� z2) · · · (s� zm)

where pi and zi are pole and zero of L(s), not the pole and zero of the closed-loop system. The
roots of the characteristic equation itself are ri from the factored form (n > m)

a(s) +Kb(s) = (s� r1)(s� r2) · · · (s� rn)

where ri is pole of the closed-loop system.
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• (Example 5.1) In Fig. 5.1, assume that G(s) = A

s(s+1) and Dc(s) = H(s) = 1. Root Locus wrt. A?

1. L(s) = 1
s(s+1) and K = A

2. a(s) = s
2 + s with p1 = �1, p2 = 0 and b(s) = 1 with no zero

3. characteristic equation and closed-loop poles:

a(s) +Kb(s) = s
2 + s+K = 0 r1,2 =

�1±
p
1� 4K

2

– at K = 0, the roots are s = �1 and s = 0.
– for 0 < K <

1
4, the roots are real between -1 and 0

– at K = 1
4, two repeated roots at s = �1

2 (breakaway point)
– for K >

1
4, the roots become complex with real parts at �1

2 and imaginary parts that
increase essentially in proportion to the square root of K.

4. The dashed lines in Fig. 5.2 correspond to roots with a damping ratio ⇣ = 0.5 (✓ = sin�1 ⇣ =
30�). The crossing points denoted by dots can be calculated as follows:

r1,2 = �
1

2
±
p
4K � 1

2
j = �1

2
±
p
3

2
j ! ) K = 1
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• solve (Example 5.2)

• (Example) In the Fig. 5.1, assume that G(s) = 1
s(s+c) and Dc(s) = H(s) = 1. Root Locus wrt c ?

1. The closed-loop characteristic equation:

1 +G(s) = 1 +
1

s2 + cs
= 0 ! 1 + c

s

s2 + 1
= 0

2. L(s) = s

s2+1 and K = c

3. a(s) = s
2 + 1 with p1,2 = ±j and b(s) = s with z1 = 0

4. characteristic equation and closed-loop poles:

a(s) +Kb(s) = s
2 +Ks+ 1 = 0 r1,2 =

�K ±
p
K2 � 4

2

– at K = 0, the roots are s = j and s = �j
– for 0 < K < 2, the roots are complex at s = �K

2 ±
p
4�K2

2 j.
– at K = 2, two repeated roots at s = �1 (break-in point)
– for K > 2, the roots become real values on the negative real axis at s = �K

2 ±
p
K2�4
2

– as K !1, the real roots approach at s = 0 and s = �1.
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5. For the understanding of locus of the complex roots, let us apply s = � + j! for 0 < K < 2:

s
2 +Ks+ 1 = �

2 � !2 + 2j�! +K(� + j!) + 1 = 0 ! �
2 � !2 +K� + 1 = 0 and 2�! +K! = 0

From above relation, we can know K = �2� and we can derive the following:

�
2 � !2 +K� + 1 = �

2 � !2 � 2�2 + 1 = 0 ! �
2 + !

2 = 1 for � 1 < � < 0

thus we can know that the semi-circle is plotted for 0 < K < 2 as shown in the figure.

• Matlab command : rlocus(sys)
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2 Guidelines for Determining a Root Locus
• (Definition I) The root locus is the set of values of s for which 1 + KL(s) = 0 is satisfied as the

real parameter K varies from 0 to +1. Typically, 1 +KL(s) = 0 is the characteristic equation of
the system, and in this case, the roots on the locus are the closed-loop poles of that system.

• (Definition II, Phase Condition) The root locus of L(s) is the set of points in the s-plane where
the phase of L(s) is 180�. To test whether a point in the s-plane is on the locus, we define the
angle to the test point from a zero as  i and the angle to the test point from a pole as �i then
the Definition II is expressed as those points in the s-plane where, for an integer l,

\L(s0) =
X

 i �
X

�i = 180� + 360(l � 1)
X

angle to the test point from a zero�
X

angle to the test point from a pole = ±180�,±540�, · · ·
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• Consider the example,

L(s) =
s+ 1

s(s+ 5)[(s+ 2)2 + 4]

In the figure, the poles are marked ⇥ and the zero is marked �. Suppose we select the test point
s0 = �1+ 2j. Let us test whether or not s0 (test point) lies on the root locus for some value of K.

 1 = \(s0 � (�1)) = \((�1 + 2j)� (�1)) = \2j = 90�

�1 = \(s0 � (0)) = \(�1 + 2j) = 180� � tan�1 2 = 116.6�

�2 = \(s0 � (�2 + 2j)) = \((�1 + 2j)� (�2 + 2j)) = \1 = 0�

�3 = \(s0 � (�2� 2j)) = \((�1 + 2j)� (�2� 2j)) = \(1 + 4j) = tan�1 4 = 76�

�4 = \(s0 � (�5)) = \(4 + 2j) = tan�1
1

2
= 26.6�

as a result \L =  1 � (�1 + �2 + �3 + �4) = �129.2� 6= �180�

Since the phase of L(s0) is not ±180�, we conclude that s0 is not on the root locus.
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1. Rules for Determining a Positive Root Locus

a) (Rule 1, Start and End) The n branches of the locus start at the poles of L(s) and m of these
branches end on the zeros of L(s).

a(s) +Kb(s) = 0

when K = 0, a(s) = 0 poles of L(s) are roots

when K =1, b(s) = 0 zeros (including infinity zeros) of L(s) are roots

b) (Rule 2, Real Axis) The loci are on the real axis to the left of an odd number of poles and
zeros.

c) (Rule 3, Asymptotes) For large s and K, n �m branches of the loci are asymptotic to lines
at angles �l radiating out from the point s = ↵ on the real axis, where

�l =
180� + 360(l � 1)

n�m
for l = 0,±1,±2, · · ·

↵ =

P
pi �

P
zi

n�m
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d) (Rule 4, Departure Angles and Arrival Angles) The angle of departure of a branch of the
locus from a pole is given by, with the multiplicity q of the repeated poles,

q�l,dep =
X

 i �
X

i 6=l,dep

�i � 180� � 360�(l � 1)

= sum of the angles to all zeros� sum of the angles to the remaining poles� 180� � 360�(l � 1)

where l is an integer and takes on the values 1, 2, . . . , q.
Likewise, the angles of arrival of a branch at a zero with multiplicity q is given by

q l,arr =
X

�i �
X

i 6=l,arr

 i + 180� + 360�(l � 1)

= sum of the angles to all poles� sum of the angles to the remaining zeros + 180� + 360�(l � 1)

e) (Rule 5, Break-in and Breakaway Points) The break-in and breakaway points are obtained
by solving

dK

ds
= 0  K = � 1

L(s)
= � b(s)

a(s)
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f) Consider the following example:

L(s) =
1

s[(s+ 4)2 + 16]
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i. (Rule 1, Start and End)

when K = 0, s = 0,�4 + 4j,�4� 4j poles of L(s)

when K =1, s =1,1,1 zeros of L(s)

ii. (Rule 2, Real Axis) Negative real axis is locus
iii. (Rule 3, Asymptotes) point at ↵ with angles of �l (Fig. 5.6)

�l =
180� + 360(l � 1)

3
= ±60�, 180�

↵ =
0� 4 + 4j � 4� 4j

3
= �8

3

iv. (Rule 4, Departure Angles and Arrival Angles) (Fig. 5.7)

�dep,�4+4j = 0� (\(�4 + 4j � 0) + \(�4 + 4j + 4 + 4j))� 180� = 0� 135� � 90� � 180� = �45�

�dep,�4�4j = 0� (\(�4� 4j � 0) + \(�4� 4j + 4� 4j))� 180� = 0 + 135� + 90� � 180� = 45�

v. (Rule 5, Break-in and Breakaway Points) No break-away and break-in points.
vi. As a result, the root-locus of the system is given by implementing the following code

s = tf(’s’);
sysL = 1/(s*((s+4)ˆ2+16));
rlocus(sysL)
[K,p] = rlocfind(sysL)
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2. Selecting the Parameter Value

• Using Definition II of the locus, we have developed rules to sketch a root locus from the
phase of L(s) alone. If the equation is actually to have a root at a particular place when the
phase of L(s) is 180�, then a magnitude condition must also be satisfied.

• The magnitude condition is written as

K =
1

|L(s)|  K = � 1

L(s)

• For given the following example, let us calculate the the gain K when ⇣ = 0.5.

L(s) =
1

s[(s+ 4)2 + 16]

Let us assume that the crossing point s0 = �2+2
p
3j between ⇣ = 0.5 line and the root locus

is found as shown in Fig. 5.9. Then,

K =
1

|L(s0)|
= |s0| · |s0 � (�4 + 4j)| · |s0 � (�4� 4j)| = 4 · 2.1 · 7.7 = 65
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