
3 The Three-Term Controller: PID Control
• Through long experience and by trial and error, we have discovered “integral control” as a means

of eliminating bias offset.

• In case of poor dynamic response, an “anticipatory term” based on the derivative was added. The
result is called PID controller and has the TF

Dc(s) = kP +
kI

s
+ kDs

where kP is the “proportional gain”, kI is the “integral gain”, and kD is the “derivative gain”.

1. Proportional Control (P)

• When the feedback control signal is linearly proportional to the system error,

u(t) = kPe(t)

• The TF of P control

U(s)

E(s)
= Dc(s) = kP
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• For example, consider Fig. 4.2 with G(s) = 1
s2+a1s+a2

and Dc(s) = kP , the characteristic equa-
tion becomes

1 +
kP

s2 + a1s+ a2
! s

2 + a1s+ (a2 + kP ) ! s
2 + 2⇣!ns+ !

2
n

a) Here, we can determine the natural frequency using the kP , but we cannot control the
damping term a1 since it is independent of kP .

!n =
p

a2 + kP ⇣ =
a1

2
p
a2 + kP

b) The system is Type 0 because the steady-state error remains in case of step input.

Y (s)

R(s)
=

kPG(s)

1 + kPG(s)
=

kP

s2 + a1s+ (a2 + kP )

yss = lim
s!0

sY (s)

= lim
s!0

s
kP

s2 + a1s+ (a2 + kP )

1

s
=

kP

a2 + kP

ess = 1� yss =
a2

a2 + kP

where the error decreases and the response exhibits a decrease in damping as the gain
increases. (Fig. 4.7)
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c) The error due to a disturbance is given by

Tw(s) = � Y (s)

W (s)
= � G(s)

1 + kPG(s)
= � 1

s2 + a1s+ (a2 + kP )
= s

0
To,w(s) ! type 0

ess = � lim
s!0

s
1

s2 + a1s+ (a2 + kP )

1

s
= � 1

a2 + kP
! K0,w = �(a2 + kP )

where the error due to the step disturbance decreases as the gain increases.
• For systems beyond second order, the situation is more complicated than that illustrated

above. A higher gain will increase the speed of response but typically at the cost of a larger
transient overshoot and less overall damping

• One way to improve the steady-state accuracy of control without using extremely high pro-
portional gain is to introduce integral control
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2. Integral Control (I)

• When the feedback control signal is linearly proportional to the integral of the system error,

u(t) = kI

Z
t

0
e(⌧)d⌧

• The goal of integral control is to minimize the steady-state tracking error and the steady-
state output response to disturbances.

• This means that the control signal at each instant of time is a summation of all past values
of the tracking error, therefore, the control action is based on the history of the system error.

• Fig. 4.8 illustrates that the control signal at any instant of time is proportional to the area
under the system error curve.
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• The TF of I control

U(s)

E(s)
= Dc(s) =

kI

s

• Again, consider the Fig. 4.2 under the integral control.

Y (s)

R(s)
=

kIG(s)

s+ kIG(s)

E(s)

R(s)
=

s

s+ kIG(s)

• Assume unit-step reference input of R(s) = 1
s

and unit DC gain of G(0) = 1, the steady-state
errors

yss = lim
s!0

s
kIG(s)

s+ kIG(s)

1

s
= 1

ess = lim
s!0

s
s

s+ kIG(s)

1

s
= 0

• Since the system of Dc(s)G(s) = kIG(s)
s

with G(0) = 1 is type 1, thus we have the velocity
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constant as follow:

Kv = kI ! ess =
1

kI
for ramp input

= lim
s!0

s
s

s+ kIG(s)

1

s2
=

1

kI

• The integral gain kI can be selected purely to provide an acceptable dynamic response; how-
ever, typically it will cause instability if raised sufficiently high.

• The error due to a disturbance is given by (R(s) = 0)

Tw(s) = � Y (s)

W (s)
= � sG(s)

s+ kIG(s)
= s

1
To,w(s) ! type 1

ess = � lim
s!0

s
sG(s)

s+ kIG(s)

1

s
= 0 for step disturbance

ess = � lim
s!0

s
sG(s)

s+ kIG(s)

1

s2
= � 1

kI
! K1,w = �kI for ramp disturbance

• In conclusion, the integral feedback results in zero steady-state output error (type 1) in both
stepwise tracking and disturbance rejection. Plant parameter changes can be tolerated, the
results above are independent of the plant parameter values. These properties of integral
control are referred to as “robust”.
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3. Derivative Control (D)

• The goal of derivative feedback is
(1) to improve the closed-loop system stability
(2) speeding up the transient response
(3) reducing overshoot.

Whenever increased stability is desired, the use of derivative feedback is called for.
• The control law is

u(t) = kDė(t)

where the derivative control is almost never used by itself; it is usually augmented by pro-
portional control.

• The TF of D control

U(s)

E(s)
= Dc(s) = kDs

• A key feature is that derivative control knows the slope of the error signal, so it takes con-
trol action based on the trend in the error signal. Hence it is said to have an “anticipatory
behavior”.

• One disadvantage of derivative control is that it tends to amplify noise.
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• See the Fig. 4.10, both configurations result in the same characteristic equation (poles), but
the the zeros from the reference to the output are different in the both cases.

• With the derivative in the feedback path as shown in Fig. 4.10(a), the reference is not dif-
ferentiated, which is how the undesirable response to sudden changes is avoided.
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4. Proportional plus Integral Control (PI)

• Adding an integral term to the proportional controller to achieve the lower steady-state er-
rors results in the PI control equation in the time domain:

u(t) = kPe(t) + kI

Z
t

0
e(⌧)d⌧

• The TF of PI control

U(s)

E(s)
= Dc(s) = kP +

kI

s

• Introduction of the integral term raises the type to Type 1 and the system can therefore
reject completely constant bias disturbance.

• solve (Example 4.5)
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5. PID Control

• PID control equation in the time domain

u(t) = kPe(t) + kI

Z
t

0
e(⌧)d⌧ + kDė(t)

• The TF of PID control

U(s)

E(s)
= Dc(s) = kP +

kI

s
+ kDs

• For example, consider Fig. 4.2 with G(s) = A

s2+a1s+a2
and Dc(s) = kP + kI

s
+ kDs. The character-

istic equation becomes

1 +G(s)Dc(s) = 0 ! 1 +
A

s2 + a1s+ a2
(kP +

kI

s
+ kDs) = 0

s
3 + (a1 + AkD)s

2 + (a2 + AkP )s+ AkI = 0

where three roots (poles) are selected arbitrary in theory.
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• (Example 4.6 PID Control of Motor Speed) Consider the result of Example 2.15

⇥m(s)

Va(s)
=

Kt

s[(Jms+ b)(Las+Ra) +KtKe]

If we apply the P, PI, and PID controllers, respectively, then we have the response curves
shown in Fig. 4.16. Please check it using MATLAB.

– Adding the integral term increases the oscillatory behavior but eliminates the steady-
state error

– Adding the derivative term reduces the oscillation while maintaining zero steady-state
error.

• solve (Example 4.7, PI Control for a DC-DC Voltage Converter)
• solve (Example 4.8, Cone Displacement Control for a Loudpeaker)
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• (Example PI Control for a DC Motor Position Control) Consider the Fig. 4.6. Determine the
system type and the steady-state error with respect to disturbance input. (R(s) = 0) (a) when
P control is applied,

Tw(s) =
E(s)

W (s)
= � B

s(⌧s+ 1) + Akp

= � B

⌧s2 + s+ Akp

= s
0
To,w(s) ! type 0

ess = � B

AkP
for step disturbance ! K0,w = �Akp

B
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(b) when PI control is applied

Tw(s) = � Bs

s2(⌧s+ 1) + A(kps+ kI)

= � Bs

⌧s3 + s2 + Akps+ AkI

= s
1
To,w(s) ! type 1

ess = 0 for step disturbance

ess = � B

AkI
for ramp disturbance ! K1,w = �AkI

B
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• (Example Satellite Attitude Control) For given figure (b), determine the system types and
error response to disturbance

Tw(s) =
E(s)

W (s)
= �

1
Js2

1 + kP+kDs

Js2

= � 1

Js2 + kDs+ kP

= s
0
To,w(0) ! type 0

ess = � 1

kP
for step disturbance ! K0,w = �kP
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For given the figure (c),

Tw(s) =
E(s)

W (s)
= �

1
Js2

1 + kP s+kDs2+kI

Js3

= � s

Js3 + kDs
2 + kPs+ kI

= s
1
To,w(s) ! type 1

ess = 0 for step disturbance

ess = � 1

kI
for ramp disturbance ! K1,w = �kI
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